1/* $NetBSD: rf_map.c,v 1.47 2016/10/15 20:31:15 oster Exp $ */
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.47 2016/10/15 20:31:15 oster Exp $");
37
38#include <dev/raidframe/raidframevar.h>
39
40#include "rf_threadstuff.h"
41#include "rf_raid.h"
42#include "rf_general.h"
43#include "rf_map.h"
44#include "rf_shutdown.h"
45
46static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
47static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
48
49/***************************************************************************
50 *
51 * MapAccess -- main 1st order mapping routine. Maps an access in the
52 * RAID address space to the corresponding set of physical disk
53 * addresses. The result is returned as a list of AccessStripeMap
54 * structures, one per stripe accessed. Each ASM structure contains a
55 * pointer to a list of PhysDiskAddr structures, which describe the
56 * physical locations touched by the user access. Note that this
57 * routine returns only static mapping information, i.e. the list of
58 * physical addresses returned does not necessarily identify the set
59 * of physical locations that will actually be read or written. The
60 * routine also maps the parity. The physical disk location returned
61 * always indicates the entire parity unit, even when only a subset of
62 * it is being accessed. This is because an access that is not stripe
63 * unit aligned but that spans a stripe unit boundary may require
64 * access two distinct portions of the parity unit, and we can't yet
65 * tell which portion(s) we'll actually need. We leave it up to the
66 * algorithm selection code to decide what subset of the parity unit
67 * to access. Note that addresses in the RAID address space must
68 * always be maintained as longs, instead of ints.
69 *
70 * This routine returns NULL if numBlocks is 0
71 *
72 * raidAddress - starting address in RAID address space
73 * numBlocks - number of blocks in RAID address space to access
74 * buffer - buffer to supply/recieve data
75 * remap - 1 => remap address to spare space
76 ***************************************************************************/
77
78RF_AccessStripeMapHeader_t *
79rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
80 RF_SectorCount_t numBlocks, void *buffer, int remap)
81{
82 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
83 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
84 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
85 int faultsTolerated = layoutPtr->map->faultsTolerated;
86 /* we'll change raidAddress along the way */
87 RF_RaidAddr_t startAddress = raidAddress;
88 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
89 RF_RaidDisk_t *disks = raidPtr->Disks;
90 RF_PhysDiskAddr_t *pda_p;
91#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
92 RF_PhysDiskAddr_t *pda_q;
93#endif
94 RF_StripeCount_t numStripes = 0;
95 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
96 nextStripeUnitAddress;
97 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
98 RF_StripeCount_t totStripes;
99 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
100 RF_AccessStripeMap_t *asmList, *t_asm;
101 RF_PhysDiskAddr_t *pdaList, *t_pda;
102
103 /* allocate all the ASMs and PDAs up front */
104 lastRaidAddr = raidAddress + numBlocks - 1;
105 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
106 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
107 totStripes = lastSID - stripeID + 1;
108 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
109 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
110
111 asmList = rf_AllocASMList(totStripes);
112
113 /* may also need pda(s) per stripe for parity */
114 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
115 faultsTolerated * totStripes);
116
117
118 if (raidAddress + numBlocks > raidPtr->totalSectors) {
119 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
120 (int) raidAddress);
121 return (NULL);
122 }
123#if RF_DEBUG_MAP
124 if (rf_mapDebug)
125 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126#endif
127 for (; raidAddress < endAddress;) {
128 /* make the next stripe structure */
129 RF_ASSERT(asmList);
130 t_asm = asmList;
131 asmList = asmList->next;
132 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
133 if (!asm_p)
134 asm_list = asm_p = t_asm;
135 else {
136 asm_p->next = t_asm;
137 asm_p = asm_p->next;
138 }
139 numStripes++;
140
141 /* map SUs from current location to the end of the stripe */
142 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
143 raidAddress) */ stripeID++;
144 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
145 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
146 asm_p->raidAddress = raidAddress;
147 asm_p->endRaidAddress = stripeEndAddress;
148
149 /* map each stripe unit in the stripe */
150 pda_p = NULL;
151
152 /* Raid addr of start of portion of access that is
153 within this stripe */
154 startAddrWithinStripe = raidAddress;
155
156 for (; raidAddress < stripeEndAddress;) {
157 RF_ASSERT(pdaList);
158 t_pda = pdaList;
159 pdaList = pdaList->next;
160 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
161 if (!pda_p)
162 asm_p->physInfo = pda_p = t_pda;
163 else {
164 pda_p->next = t_pda;
165 pda_p = pda_p->next;
166 }
167
168 pda_p->type = RF_PDA_TYPE_DATA;
169 (layoutPtr->map->MapSector) (raidPtr, raidAddress,
170 &(pda_p->col),
171 &(pda_p->startSector),
172 remap);
173
174 /* mark any failures we find. failedPDA is
175 * don't-care if there is more than one
176 * failure */
177
178 /* the RAID address corresponding to this
179 physical diskaddress */
180 pda_p->raidAddress = raidAddress;
181 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
182 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
183 RF_ASSERT(pda_p->numSector != 0);
184 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
185 pda_p->bufPtr = (char *)buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
186 asm_p->totalSectorsAccessed += pda_p->numSector;
187 asm_p->numStripeUnitsAccessed++;
188
189 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
190 }
191
192 /* Map the parity. At this stage, the startSector and
193 * numSector fields for the parity unit are always set
194 * to indicate the entire parity unit. We may modify
195 * this after mapping the data portion. */
196 switch (faultsTolerated) {
197 case 0:
198 break;
199 case 1: /* single fault tolerant */
200 RF_ASSERT(pdaList);
201 t_pda = pdaList;
202 pdaList = pdaList->next;
203 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
204 pda_p = asm_p->parityInfo = t_pda;
205 pda_p->type = RF_PDA_TYPE_PARITY;
206 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
207 &(pda_p->col), &(pda_p->startSector), remap);
208 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
209 /* raidAddr may be needed to find unit to redirect to */
210 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
211 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
212 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
213
214 break;
215#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
216 case 2: /* two fault tolerant */
217 RF_ASSERT(pdaList && pdaList->next);
218 t_pda = pdaList;
219 pdaList = pdaList->next;
220 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
221 pda_p = asm_p->parityInfo = t_pda;
222 pda_p->type = RF_PDA_TYPE_PARITY;
223 t_pda = pdaList;
224 pdaList = pdaList->next;
225 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
226 pda_q = asm_p->qInfo = t_pda;
227 pda_q->type = RF_PDA_TYPE_Q;
228 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
229 &(pda_p->col), &(pda_p->startSector), remap);
230 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
231 &(pda_q->col), &(pda_q->startSector), remap);
232 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
233 /* raidAddr may be needed to find unit to redirect to */
234 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
235 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
236 /* failure mode stuff */
237 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
238 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
239 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
240 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
241 break;
242#endif
243 }
244 }
245 RF_ASSERT(asmList == NULL && pdaList == NULL);
246 /* make the header structure */
247 asm_hdr = rf_AllocAccessStripeMapHeader();
248 RF_ASSERT(numStripes == totStripes);
249 asm_hdr->numStripes = numStripes;
250 asm_hdr->stripeMap = asm_list;
251
252#if RF_DEBUG_MAP
253 if (rf_mapDebug)
254 rf_PrintAccessStripeMap(asm_hdr);
255#endif
256 return (asm_hdr);
257}
258
259/***************************************************************************
260 * This routine walks through an ASM list and marks the PDAs that have
261 * failed. It's called only when a disk failure causes an in-flight
262 * DAG to fail. The parity may consist of two components, but we want
263 * to use only one failedPDA pointer. Thus we set failedPDA to point
264 * to the first parity component, and rely on the rest of the code to
265 * do the right thing with this.
266 ***************************************************************************/
267
268void
269rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
270 RF_AccessStripeMapHeader_t *asm_h)
271{
272 RF_RaidDisk_t *disks = raidPtr->Disks;
273 RF_AccessStripeMap_t *asmap;
274 RF_PhysDiskAddr_t *pda;
275
276 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
277 asmap->numDataFailed = 0;
278 asmap->numParityFailed = 0;
279 asmap->numQFailed = 0;
280 asmap->numFailedPDAs = 0;
281 memset((char *) asmap->failedPDAs, 0,
282 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
283 for (pda = asmap->physInfo; pda; pda = pda->next) {
284 if (RF_DEAD_DISK(disks[pda->col].status)) {
285 asmap->numDataFailed++;
286 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
287 asmap->numFailedPDAs++;
288 }
289 }
290 pda = asmap->parityInfo;
291 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
292 asmap->numParityFailed++;
293 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
294 asmap->numFailedPDAs++;
295 }
296 pda = asmap->qInfo;
297 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
298 asmap->numQFailed++;
299 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
300 asmap->numFailedPDAs++;
301 }
302 }
303}
304
305/***************************************************************************
306 *
307 * routines to allocate and free list elements. All allocation
308 * routines zero the structure before returning it.
309 *
310 * FreePhysDiskAddr is static. It should never be called directly,
311 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
312 * list.
313 *
314 ***************************************************************************/
315
316#define RF_MAX_FREE_ASMHDR 128
317#define RF_MIN_FREE_ASMHDR 32
318
319#define RF_MAX_FREE_ASM 192
320#define RF_MIN_FREE_ASM 64
321
322#define RF_MAX_FREE_PDA 192
323#define RF_MIN_FREE_PDA 64
324
325#define RF_MAX_FREE_ASMHLE 64
326#define RF_MIN_FREE_ASMHLE 16
327
328#define RF_MAX_FREE_FSS 128
329#define RF_MIN_FREE_FSS 32
330
331#define RF_MAX_FREE_VFPLE 128
332#define RF_MIN_FREE_VFPLE 32
333
334#define RF_MAX_FREE_VPLE 128
335#define RF_MIN_FREE_VPLE 32
336
337
338/* called at shutdown time. So far, all that is necessary is to
339 release all the free lists */
340static void rf_ShutdownMapModule(void *);
341static void
342rf_ShutdownMapModule(void *ignored)
343{
344 pool_destroy(&rf_pools.asm_hdr);
345 pool_destroy(&rf_pools.asmap);
346 pool_destroy(&rf_pools.asmhle);
347 pool_destroy(&rf_pools.pda);
348 pool_destroy(&rf_pools.fss);
349 pool_destroy(&rf_pools.vfple);
350 pool_destroy(&rf_pools.vple);
351}
352
353int
354rf_ConfigureMapModule(RF_ShutdownList_t **listp)
355{
356
357 rf_pool_init(&rf_pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t),
358 "rf_asmhdr_pl", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR);
359 rf_pool_init(&rf_pools.asmap, sizeof(RF_AccessStripeMap_t),
360 "rf_asm_pl", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM);
361 rf_pool_init(&rf_pools.asmhle, sizeof(RF_ASMHeaderListElem_t),
362 "rf_asmhle_pl", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE);
363 rf_pool_init(&rf_pools.pda, sizeof(RF_PhysDiskAddr_t),
364 "rf_pda_pl", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA);
365 rf_pool_init(&rf_pools.fss, sizeof(RF_FailedStripe_t),
366 "rf_fss_pl", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS);
367 rf_pool_init(&rf_pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t),
368 "rf_vfple_pl", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE);
369 rf_pool_init(&rf_pools.vple, sizeof(RF_VoidPointerListElem_t),
370 "rf_vple_pl", RF_MIN_FREE_VPLE, RF_MAX_FREE_VPLE);
371 rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
372
373 return (0);
374}
375
376RF_AccessStripeMapHeader_t *
377rf_AllocAccessStripeMapHeader(void)
378{
379 RF_AccessStripeMapHeader_t *p;
380
381 p = pool_get(&rf_pools.asm_hdr, PR_WAITOK);
382 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
383
384 return (p);
385}
386
387void
388rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
389{
390 pool_put(&rf_pools.asm_hdr, p);
391}
392
393
394RF_VoidFunctionPointerListElem_t *
395rf_AllocVFPListElem(void)
396{
397 RF_VoidFunctionPointerListElem_t *p;
398
399 p = pool_get(&rf_pools.vfple, PR_WAITOK);
400 memset((char *) p, 0, sizeof(RF_VoidFunctionPointerListElem_t));
401
402 return (p);
403}
404
405void
406rf_FreeVFPListElem(RF_VoidFunctionPointerListElem_t *p)
407{
408
409 pool_put(&rf_pools.vfple, p);
410}
411
412
413RF_VoidPointerListElem_t *
414rf_AllocVPListElem(void)
415{
416 RF_VoidPointerListElem_t *p;
417
418 p = pool_get(&rf_pools.vple, PR_WAITOK);
419 memset((char *) p, 0, sizeof(RF_VoidPointerListElem_t));
420
421 return (p);
422}
423
424void
425rf_FreeVPListElem(RF_VoidPointerListElem_t *p)
426{
427
428 pool_put(&rf_pools.vple, p);
429}
430
431RF_ASMHeaderListElem_t *
432rf_AllocASMHeaderListElem(void)
433{
434 RF_ASMHeaderListElem_t *p;
435
436 p = pool_get(&rf_pools.asmhle, PR_WAITOK);
437 memset((char *) p, 0, sizeof(RF_ASMHeaderListElem_t));
438
439 return (p);
440}
441
442void
443rf_FreeASMHeaderListElem(RF_ASMHeaderListElem_t *p)
444{
445
446 pool_put(&rf_pools.asmhle, p);
447}
448
449RF_FailedStripe_t *
450rf_AllocFailedStripeStruct(void)
451{
452 RF_FailedStripe_t *p;
453
454 p = pool_get(&rf_pools.fss, PR_WAITOK);
455 memset((char *) p, 0, sizeof(RF_FailedStripe_t));
456
457 return (p);
458}
459
460void
461rf_FreeFailedStripeStruct(RF_FailedStripe_t *p)
462{
463 pool_put(&rf_pools.fss, p);
464}
465
466
467
468
469
470RF_PhysDiskAddr_t *
471rf_AllocPhysDiskAddr(void)
472{
473 RF_PhysDiskAddr_t *p;
474
475 p = pool_get(&rf_pools.pda, PR_WAITOK);
476 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
477
478 return (p);
479}
480/* allocates a list of PDAs, locking the free list only once when we
481 * have to call calloc, we do it one component at a time to simplify
482 * the process of freeing the list at program shutdown. This should
483 * not be much of a performance hit, because it should be very
484 * infrequently executed. */
485RF_PhysDiskAddr_t *
486rf_AllocPDAList(int count)
487{
488 RF_PhysDiskAddr_t *p, *prev;
489 int i;
490
491 p = NULL;
492 prev = NULL;
493 for (i = 0; i < count; i++) {
494 p = pool_get(&rf_pools.pda, PR_WAITOK);
495 p->next = prev;
496 prev = p;
497 }
498
499 return (p);
500}
501
502void
503rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
504{
505 pool_put(&rf_pools.pda, p);
506}
507
508static void
509rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
510{
511 RF_PhysDiskAddr_t *p, *tmp;
512
513 p=pda_list;
514 while (p) {
515 tmp = p->next;
516 pool_put(&rf_pools.pda, p);
517 p = tmp;
518 }
519}
520
521/* this is essentially identical to AllocPDAList. I should combine
522 * the two. when we have to call calloc, we do it one component at a
523 * time to simplify the process of freeing the list at program
524 * shutdown. This should not be much of a performance hit, because it
525 * should be very infrequently executed. */
526RF_AccessStripeMap_t *
527rf_AllocASMList(int count)
528{
529 RF_AccessStripeMap_t *p, *prev;
530 int i;
531
532 p = NULL;
533 prev = NULL;
534 for (i = 0; i < count; i++) {
535 p = pool_get(&rf_pools.asmap, PR_WAITOK);
536 p->next = prev;
537 prev = p;
538 }
539 return (p);
540}
541
542static void
543rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
544{
545 RF_AccessStripeMap_t *p, *tmp;
546
547 p=asm_list;
548 while (p) {
549 tmp = p->next;
550 pool_put(&rf_pools.asmap, p);
551 p = tmp;
552 }
553}
554
555void
556rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
557{
558 RF_AccessStripeMap_t *p;
559 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
560 int count = 0, t;
561
562 for (p = hdr->stripeMap; p; p = p->next) {
563
564 /* link the 3 pda lists into the accumulating pda list */
565
566 if (!pdaList)
567 pdaList = p->qInfo;
568 else
569 pdaEnd->next = p->qInfo;
570 for (trailer = NULL, pdp = p->qInfo; pdp;) {
571 trailer = pdp;
572 pdp = pdp->next;
573 count++;
574 }
575 if (trailer)
576 pdaEnd = trailer;
577
578 if (!pdaList)
579 pdaList = p->parityInfo;
580 else
581 pdaEnd->next = p->parityInfo;
582 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
583 trailer = pdp;
584 pdp = pdp->next;
585 count++;
586 }
587 if (trailer)
588 pdaEnd = trailer;
589
590 if (!pdaList)
591 pdaList = p->physInfo;
592 else
593 pdaEnd->next = p->physInfo;
594 for (trailer = NULL, pdp = p->physInfo; pdp;) {
595 trailer = pdp;
596 pdp = pdp->next;
597 count++;
598 }
599 if (trailer)
600 pdaEnd = trailer;
601 }
602
603 /* debug only */
604 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
605 t++;
606 RF_ASSERT(t == count);
607
608 if (pdaList)
609 rf_FreePDAList(pdaList);
610 rf_FreeASMList(hdr->stripeMap);
611 rf_FreeAccessStripeMapHeader(hdr);
612}
613/* We can't use the large write optimization if there are any failures
614 * in the stripe. In the declustered layout, there is no way to
615 * immediately determine what disks constitute a stripe, so we
616 * actually have to hunt through the stripe looking for failures. The
617 * reason we map the parity instead of just using asm->parityInfo->col
618 * is because the latter may have been already redirected to a spare
619 * drive, which would mess up the computation of the stripe offset.
620 *
621 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
622int
623rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
624{
625 RF_RowCol_t tcol, pcol, *diskids, i;
626 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
627 RF_StripeCount_t stripeOffset;
628 int numFailures;
629 RF_RaidAddr_t sosAddr;
630 RF_SectorNum_t diskOffset, poffset;
631
632 /* quick out in the fault-free case. */
633 rf_lock_mutex2(raidPtr->mutex);
634 numFailures = raidPtr->numFailures;
635 rf_unlock_mutex2(raidPtr->mutex);
636 if (numFailures == 0)
637 return (0);
638
639 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
640 asmap->raidAddress);
641 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
642 &diskids);
643 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
644 &pcol, &poffset, 0); /* get pcol */
645
646 /* this need not be true if we've redirected the access to a
647 * spare in another row RF_ASSERT(row == testrow); */
648 stripeOffset = 0;
649 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
650 if (diskids[i] != pcol) {
651 if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
652 if (raidPtr->status != rf_rs_reconstructing)
653 return (1);
654 RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
655 layoutPtr->map->MapSector(raidPtr,
656 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
657 &tcol, &diskOffset, 0);
658 RF_ASSERT(tcol == diskids[i]);
659 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
660 return (1);
661 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
662 return (0);
663 }
664 stripeOffset++;
665 }
666 }
667 return (0);
668}
669#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
670/*
671 return the number of failed data units in the stripe.
672*/
673
674int
675rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
676{
677 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
678 RF_RowCol_t tcol, i;
679 RF_SectorNum_t diskOffset;
680 RF_RaidAddr_t sosAddr;
681 int numFailures;
682
683 /* quick out in the fault-free case. */
684 rf_lock_mutex2(raidPtr->mutex);
685 numFailures = raidPtr->numFailures;
686 rf_unlock_mutex2(raidPtr->mutex);
687 if (numFailures == 0)
688 return (0);
689 numFailures = 0;
690
691 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
692 asmap->raidAddress);
693 for (i = 0; i < layoutPtr->numDataCol; i++) {
694 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
695 &tcol, &diskOffset, 0);
696 if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
697 numFailures++;
698 }
699
700 return numFailures;
701}
702#endif
703
704/****************************************************************************
705 *
706 * debug routines
707 *
708 ***************************************************************************/
709#if RF_DEBUG_MAP
710void
711rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
712{
713 rf_PrintFullAccessStripeMap(asm_h, 0);
714}
715#endif
716
717/* prbuf - flag to print buffer pointers */
718void
719rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
720{
721 int i;
722 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
723 RF_PhysDiskAddr_t *p;
724 printf("%d stripes total\n", (int) asm_h->numStripes);
725 for (; asmap; asmap = asmap->next) {
726 /* printf("Num failures: %d\n",asmap->numDataFailed); */
727 /* printf("Num sectors:
728 * %d\n",(int)asmap->totalSectorsAccessed); */
729 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
730 (int) asmap->stripeID,
731 (int) asmap->totalSectorsAccessed,
732 (int) asmap->numDataFailed,
733 (int) asmap->numParityFailed);
734 if (asmap->parityInfo) {
735 printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
736 (int) asmap->parityInfo->startSector,
737 (int) (asmap->parityInfo->startSector +
738 asmap->parityInfo->numSector - 1));
739 if (prbuf)
740 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
741 if (asmap->parityInfo->next) {
742 printf(", c%d s%d-%d", asmap->parityInfo->next->col,
743 (int) asmap->parityInfo->next->startSector,
744 (int) (asmap->parityInfo->next->startSector +
745 asmap->parityInfo->next->numSector - 1));
746 if (prbuf)
747 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
748 RF_ASSERT(asmap->parityInfo->next->next == NULL);
749 }
750 printf("]\n\t");
751 }
752 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
753 printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
754 (int) (p->startSector + p->numSector - 1));
755 if (prbuf)
756 printf("b0x%lx ", (unsigned long) p->bufPtr);
757 if (i && !(i & 1))
758 printf("\n\t");
759 }
760 printf("\n");
761 p = asm_h->stripeMap->failedPDAs[0];
762 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
763 printf("[multiple failures]\n");
764 else
765 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
766 printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
767 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
768 }
769}
770
771#if RF_MAP_DEBUG
772void
773rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
774 RF_SectorCount_t numBlocks)
775{
776 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
777 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
778
779 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
780 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
781 printf("%d (0x%x), ", (int) ra, (int) ra);
782 }
783 printf("\n");
784 printf("Offset into stripe unit: %d (0x%x)\n",
785 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
786 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
787}
788#endif
789/* given a parity descriptor and the starting address within a stripe,
790 * range restrict the parity descriptor to touch only the correct
791 * stuff. */
792void
793rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
794 RF_StripeNum_t startAddrWithinStripe,
795 RF_SectorNum_t endAddress,
796 RF_RaidLayout_t *layoutPtr,
797 RF_AccessStripeMap_t *asm_p)
798{
799 RF_PhysDiskAddr_t *new_pda;
800
801 /* when we're accessing only a portion of one stripe unit, we
802 * want the parity descriptor to identify only the chunk of
803 * parity associated with the data. When the access spans
804 * exactly one stripe unit boundary and is less than a stripe
805 * unit in size, it uses two disjoint regions of the parity
806 * unit. When an access spans more than one stripe unit
807 * boundary, it uses all of the parity unit.
808 *
809 * To better handle the case where stripe units are small, we
810 * may eventually want to change the 2nd case so that if the
811 * SU size is below some threshold, we just read/write the
812 * whole thing instead of breaking it up into two accesses. */
813 if (asm_p->numStripeUnitsAccessed == 1) {
814 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
815 toAdjust->startSector += x;
816 toAdjust->raidAddress += x;
817 toAdjust->numSector = asm_p->physInfo->numSector;
818 RF_ASSERT(toAdjust->numSector != 0);
819 } else
820 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
821 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
822
823 /* create a second pda and copy the parity map info
824 * into it */
825 RF_ASSERT(toAdjust->next == NULL);
826 /* the following will get freed in rf_FreeAccessStripeMap() via
827 rf_FreePDAList() */
828 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
829 *new_pda = *toAdjust; /* structure assignment */
830 new_pda->next = NULL;
831
832 /* adjust the start sector & number of blocks for the
833 * first parity pda */
834 toAdjust->startSector += x;
835 toAdjust->raidAddress += x;
836 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
837 RF_ASSERT(toAdjust->numSector != 0);
838
839 /* adjust the second pda */
840 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
841 /* new_pda->raidAddress =
842 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
843 * toAdjust->raidAddress); */
844 RF_ASSERT(new_pda->numSector != 0);
845 }
846}
847
848/* Check if a disk has been spared or failed. If spared, redirect the
849 * I/O. If it has been failed, record it in the asm pointer. Fifth
850 * arg is whether data or parity. */
851void
852rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
853 RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
854 int parity)
855{
856 RF_DiskStatus_t dstatus;
857 RF_RowCol_t fcol;
858
859 dstatus = disks[pda_p->col].status;
860
861 if (dstatus == rf_ds_spared) {
862 /* if the disk has been spared, redirect access to the spare */
863 fcol = pda_p->col;
864 pda_p->col = disks[fcol].spareCol;
865 } else
866 if (dstatus == rf_ds_dist_spared) {
867 /* ditto if disk has been spared to dist spare space */
868#if RF_DEBUG_MAP
869 RF_RowCol_t oc = pda_p->col;
870 RF_SectorNum_t oo = pda_p->startSector;
871#endif
872 if (pda_p->type == RF_PDA_TYPE_DATA)
873 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
874 else
875 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
876
877#if RF_DEBUG_MAP
878 if (rf_mapDebug) {
879 printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
880 pda_p->col, (int) pda_p->startSector);
881 }
882#endif
883 } else
884 if (RF_DEAD_DISK(dstatus)) {
885 /* if the disk is inaccessible, mark the
886 * failure */
887 if (parity)
888 asm_p->numParityFailed++;
889 else {
890 asm_p->numDataFailed++;
891 }
892 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
893 asm_p->numFailedPDAs++;
894#if 0
895 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
896 case 1:
897 asm_p->failedPDAs[0] = pda_p;
898 break;
899 case 2:
900 asm_p->failedPDAs[1] = pda_p;
901 default:
902 break;
903 }
904#endif
905 }
906 /* the redirected access should never span a stripe unit boundary */
907 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
908 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
909 RF_ASSERT(pda_p->col != -1);
910}
911