1 | /* $NetBSD: rf_layout.h,v 1.17 2007/03/04 06:02:38 christos Exp $ */ |
2 | /* |
3 | * Copyright (c) 1995 Carnegie-Mellon University. |
4 | * All rights reserved. |
5 | * |
6 | * Author: Mark Holland |
7 | * |
8 | * Permission to use, copy, modify and distribute this software and |
9 | * its documentation is hereby granted, provided that both the copyright |
10 | * notice and this permission notice appear in all copies of the |
11 | * software, derivative works or modified versions, and any portions |
12 | * thereof, and that both notices appear in supporting documentation. |
13 | * |
14 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
15 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND |
16 | * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
17 | * |
18 | * Carnegie Mellon requests users of this software to return to |
19 | * |
20 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
21 | * School of Computer Science |
22 | * Carnegie Mellon University |
23 | * Pittsburgh PA 15213-3890 |
24 | * |
25 | * any improvements or extensions that they make and grant Carnegie the |
26 | * rights to redistribute these changes. |
27 | */ |
28 | |
29 | /* rf_layout.h -- header file defining layout data structures |
30 | */ |
31 | |
32 | #ifndef _RF__RF_LAYOUT_H_ |
33 | #define _RF__RF_LAYOUT_H_ |
34 | |
35 | #include <dev/raidframe/raidframevar.h> |
36 | #include "rf_archs.h" |
37 | #include "rf_alloclist.h" |
38 | |
39 | /* enables remapping to spare location under dist sparing */ |
40 | #define RF_REMAP 1 |
41 | #define RF_DONT_REMAP 0 |
42 | |
43 | /* |
44 | * Flags values for RF_AccessStripeMapFlags_t |
45 | */ |
46 | #define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */ |
47 | #define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs |
48 | * that support it */ |
49 | #define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */ |
50 | |
51 | /************************************************************************* |
52 | * |
53 | * this structure forms the layout component of the main Raid |
54 | * structure. It describes everything needed to define and perform |
55 | * the mapping of logical RAID addresses <-> physical disk addresses. |
56 | * |
57 | *************************************************************************/ |
58 | struct RF_RaidLayout_s { |
59 | /* configuration parameters */ |
60 | RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one |
61 | * stripe unit */ |
62 | RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */ |
63 | RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction |
64 | * unit */ |
65 | |
66 | /* redundant-but-useful info computed from the above, used in all |
67 | * layouts */ |
68 | RF_StripeCount_t numStripe; /* total number of stripes in the |
69 | * array */ |
70 | RF_SectorCount_t dataSectorsPerStripe; |
71 | RF_StripeCount_t dataStripeUnitsPerDisk; |
72 | RF_StripeCount_t numDataCol; /* number of SUs of data per stripe |
73 | * (name here is a la RAID4) */ |
74 | RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe. |
75 | * Always 1 for now */ |
76 | RF_StripeCount_t numParityLogCol; /* number of SUs of parity log |
77 | * per stripe. Always 1 for |
78 | * now */ |
79 | RF_StripeCount_t stripeUnitsPerDisk; |
80 | |
81 | const RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and |
82 | * information */ |
83 | void *layoutSpecificInfo; /* ptr to a structure holding |
84 | * layout-specific params */ |
85 | }; |
86 | /***************************************************************************************** |
87 | * |
88 | * The mapping code returns a pointer to a list of AccessStripeMap structures, which |
89 | * describes all the mapping information about an access. The list contains one |
90 | * AccessStripeMap structure per stripe touched by the access. Each element in the list |
91 | * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each |
92 | * element in this latter list describes the physical location of a stripe unit accessed |
93 | * within the corresponding stripe. |
94 | * |
95 | ****************************************************************************************/ |
96 | |
97 | #define RF_PDA_TYPE_DATA 0 |
98 | #define RF_PDA_TYPE_PARITY 1 |
99 | #define RF_PDA_TYPE_Q 2 |
100 | |
101 | struct RF_PhysDiskAddr_s { |
102 | RF_RowCol_t col; /* disk identifier */ |
103 | RF_SectorNum_t startSector; /* sector offset into the disk */ |
104 | RF_SectorCount_t numSector; /* number of sectors accessed */ |
105 | int type; /* used by higher levels: currently, data, |
106 | * parity, or q */ |
107 | void *bufPtr; /* pointer to buffer supplying/receiving data */ |
108 | RF_RaidAddr_t raidAddress; /* raid address corresponding to this |
109 | * physical disk address */ |
110 | RF_PhysDiskAddr_t *next; |
111 | }; |
112 | #define RF_MAX_FAILED_PDA RF_MAXCOL |
113 | |
114 | struct RF_AccessStripeMap_s { |
115 | RF_StripeNum_t stripeID;/* the stripe index */ |
116 | RF_RaidAddr_t raidAddress; /* the starting raid address within |
117 | * this stripe */ |
118 | RF_RaidAddr_t endRaidAddress; /* raid address one sector past the |
119 | * end of the access */ |
120 | RF_SectorCount_t totalSectorsAccessed; /* total num sectors |
121 | * identified in physInfo list */ |
122 | RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in |
123 | * physInfo list */ |
124 | int numDataFailed; /* number of failed data disks accessed */ |
125 | int numParityFailed;/* number of failed parity disks accessed (0 |
126 | * or 1) */ |
127 | int numQFailed; /* number of failed Q units accessed (0 or 1) */ |
128 | RF_AccessStripeMapFlags_t flags; /* various flags */ |
129 | int numFailedPDAs; /* number of failed phys addrs */ |
130 | RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys |
131 | * addrs */ |
132 | RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */ |
133 | RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the |
134 | * parity (P of P + Q ) */ |
135 | RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of |
136 | * P + Q */ |
137 | RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */ |
138 | RF_AccessStripeMap_t *next; |
139 | }; |
140 | /* flag values */ |
141 | #define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation |
142 | * code to redirect failed |
143 | * accs */ |
144 | #define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect |
145 | * recursive calls to the |
146 | * bailout write dag */ |
147 | #define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on |
148 | * the first parity range in |
149 | * this parity stripe */ |
150 | #define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on |
151 | * the 2nd parity range in |
152 | * this parity stripe */ |
153 | #define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon |
154 | * call on this parity stripe */ |
155 | #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must |
156 | * unblock it later */ |
157 | |
158 | struct { |
159 | RF_StripeCount_t ; /* total number of stripes touched by |
160 | * this acc */ |
161 | RF_AccessStripeMap_t *; /* pointer to the actual map. |
162 | * Also used for making lists */ |
163 | RF_AccessStripeMapHeader_t *; |
164 | }; |
165 | |
166 | /* A structure to be used in a linked list to keep track of function pointers. */ |
167 | typedef struct RF_VoidFunctionPointerListElem_s RF_VoidFunctionPointerListElem_t; |
168 | struct RF_VoidFunctionPointerListElem_s { |
169 | RF_VoidFuncPtr fn; |
170 | RF_VoidFunctionPointerListElem_t *next; |
171 | }; |
172 | |
173 | /* We need something to just be a linked list of anonymous pointers |
174 | to stuff */ |
175 | typedef struct RF_VoidPointerListElem_s RF_VoidPointerListElem_t; |
176 | struct RF_VoidPointerListElem_s { |
177 | void *p; |
178 | RF_VoidPointerListElem_t *next; |
179 | }; |
180 | |
181 | /* A structure to be used in a linked list to keep track of ASM Headers */ |
182 | typedef struct RF_ASMHeaderListElem_s ; |
183 | struct { |
184 | RF_AccessStripeMapHeader_t *; |
185 | RF_ASMHeaderListElem_t *; |
186 | }; |
187 | |
188 | /* A structure to keep track of all the data structures associated with |
189 | a failed stripe. Used for constructing the appropriate DAGs in |
190 | rf_SelectAlgorithm() in rf_aselect.c */ |
191 | typedef struct RF_FailedStripe_s RF_FailedStripe_t; |
192 | struct RF_FailedStripe_s { |
193 | RF_VoidFunctionPointerListElem_t *vfple; /* linked list of pointers to DAG creation |
194 | functions for stripes */ |
195 | RF_VoidFunctionPointerListElem_t *bvfple; /* linked list of poitners to DAG creation |
196 | functions for blocks */ |
197 | RF_ASMHeaderListElem_t *asmh_u; /* Access Stripe Map Headers for regular |
198 | stripes */ |
199 | RF_ASMHeaderListElem_t *asmh_b; /* Access Stripe Map Headers used for the |
200 | block functions */ |
201 | RF_FailedStripe_t *next; |
202 | }; |
203 | |
204 | |
205 | |
206 | /***************************************************************************************** |
207 | * |
208 | * various routines mapping addresses in the RAID address space. These work across |
209 | * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE. |
210 | * |
211 | ****************************************************************************************/ |
212 | |
213 | /* return the identifier of the stripe containing the given address */ |
214 | #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \ |
215 | ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol ) |
216 | |
217 | /* return the raid address of the start of the indicates stripe ID */ |
218 | #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \ |
219 | ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol ) |
220 | |
221 | /* return the identifier of the stripe containing the given stripe unit id */ |
222 | #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \ |
223 | ( (_addr_) / (_layoutPtr_)->numDataCol ) |
224 | |
225 | /* return the identifier of the stripe unit containing the given address */ |
226 | #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \ |
227 | ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) ) |
228 | |
229 | /* return the RAID address of next stripe boundary beyond the given address */ |
230 | #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \ |
231 | ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe ) |
232 | |
233 | /* return the RAID address of the start of the stripe containing the given address */ |
234 | #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \ |
235 | ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe ) |
236 | |
237 | /* return the RAID address of next stripe unit boundary beyond the given address */ |
238 | #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \ |
239 | ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit ) |
240 | |
241 | /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */ |
242 | #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \ |
243 | ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit ) |
244 | |
245 | /* returns the offset into the stripe. used by RaidAddressStripeAligned */ |
246 | #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \ |
247 | ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) ) |
248 | |
249 | /* returns the offset into the stripe unit. */ |
250 | #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \ |
251 | ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) ) |
252 | |
253 | /* returns nonzero if the given RAID address is stripe-aligned */ |
254 | #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \ |
255 | ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 ) |
256 | |
257 | /* returns nonzero if the given address is stripe-unit aligned */ |
258 | #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \ |
259 | ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 ) |
260 | |
261 | /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */ |
262 | #define rf_RaidAddressToByte(_raidPtr_, _addr_) \ |
263 | ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) ) |
264 | |
265 | #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \ |
266 | ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) ) |
267 | |
268 | /* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy, |
269 | * since we're asking for the address of the first sector in the parity stripe. Conversion to a |
270 | * parity stripe ID is more complex, since stripes are not contiguously allocated in |
271 | * parity stripes. |
272 | */ |
273 | #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \ |
274 | rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) ) |
275 | |
276 | #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \ |
277 | ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit ) |
278 | |
279 | const RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig); |
280 | int |
281 | rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, |
282 | RF_Config_t * cfgPtr); |
283 | RF_StripeNum_t |
284 | rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr, |
285 | RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru); |
286 | |
287 | #endif /* !_RF__RF_LAYOUT_H_ */ |
288 | |