1/* $NetBSD: if_ural.c,v 1.50 2016/07/07 06:55:42 msaitoh Exp $ */
2/* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4/*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini@free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.50 2016/07/07 06:55:42 msaitoh Exp $");
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/conf.h>
37#include <sys/device.h>
38
39#include <sys/bus.h>
40#include <machine/endian.h>
41#include <sys/intr.h>
42
43#include <net/bpf.h>
44#include <net/if.h>
45#include <net/if_arp.h>
46#include <net/if_dl.h>
47#include <net/if_ether.h>
48#include <net/if_media.h>
49#include <net/if_types.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/in_var.h>
54#include <netinet/ip.h>
55
56#include <net80211/ieee80211_netbsd.h>
57#include <net80211/ieee80211_var.h>
58#include <net80211/ieee80211_amrr.h>
59#include <net80211/ieee80211_radiotap.h>
60
61#include <dev/usb/usb.h>
62#include <dev/usb/usbdi.h>
63#include <dev/usb/usbdi_util.h>
64#include <dev/usb/usbdevs.h>
65
66#include <dev/usb/if_uralreg.h>
67#include <dev/usb/if_uralvar.h>
68
69#ifdef URAL_DEBUG
70#define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
71#define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
72int ural_debug = 0;
73#else
74#define DPRINTF(x)
75#define DPRINTFN(n, x)
76#endif
77
78/* various supported device vendors/products */
79static const struct usb_devno ural_devs[] = {
80 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
81 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
83 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
86 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
87 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
88 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
89 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
90 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
91 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
92 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
93 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
94 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
95 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
96 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
97 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
98 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
99 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
100 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
101 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
102 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
103 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
104 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
105 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
106};
107
108Static int ural_alloc_tx_list(struct ural_softc *);
109Static void ural_free_tx_list(struct ural_softc *);
110Static int ural_alloc_rx_list(struct ural_softc *);
111Static void ural_free_rx_list(struct ural_softc *);
112Static int ural_media_change(struct ifnet *);
113Static void ural_next_scan(void *);
114Static void ural_task(void *);
115Static int ural_newstate(struct ieee80211com *,
116 enum ieee80211_state, int);
117Static int ural_rxrate(struct ural_rx_desc *);
118Static void ural_txeof(struct usbd_xfer *, void *,
119 usbd_status);
120Static void ural_rxeof(struct usbd_xfer *, void *,
121 usbd_status);
122Static int ural_ack_rate(struct ieee80211com *, int);
123Static uint16_t ural_txtime(int, int, uint32_t);
124Static uint8_t ural_plcp_signal(int);
125Static void ural_setup_tx_desc(struct ural_softc *,
126 struct ural_tx_desc *, uint32_t, int, int);
127Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
128 struct ieee80211_node *);
129Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
130 struct ieee80211_node *);
131Static int ural_tx_data(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133Static void ural_start(struct ifnet *);
134Static void ural_watchdog(struct ifnet *);
135Static int ural_reset(struct ifnet *);
136Static int ural_ioctl(struct ifnet *, u_long, void *);
137Static void ural_set_testmode(struct ural_softc *);
138Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
139 int);
140Static uint16_t ural_read(struct ural_softc *, uint16_t);
141Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
142 int);
143Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
144Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
145 int);
146Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
147Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
148Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
149Static void ural_set_chan(struct ural_softc *,
150 struct ieee80211_channel *);
151Static void ural_disable_rf_tune(struct ural_softc *);
152Static void ural_enable_tsf_sync(struct ural_softc *);
153Static void ural_update_slot(struct ifnet *);
154Static void ural_set_txpreamble(struct ural_softc *);
155Static void ural_set_basicrates(struct ural_softc *);
156Static void ural_set_bssid(struct ural_softc *, uint8_t *);
157Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
158Static void ural_update_promisc(struct ural_softc *);
159Static const char *ural_get_rf(int);
160Static void ural_read_eeprom(struct ural_softc *);
161Static int ural_bbp_init(struct ural_softc *);
162Static void ural_set_txantenna(struct ural_softc *, int);
163Static void ural_set_rxantenna(struct ural_softc *, int);
164Static int ural_init(struct ifnet *);
165Static void ural_stop(struct ifnet *, int);
166Static void ural_amrr_start(struct ural_softc *,
167 struct ieee80211_node *);
168Static void ural_amrr_timeout(void *);
169Static void ural_amrr_update(struct usbd_xfer *, void *,
170 usbd_status status);
171
172/*
173 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174 */
175static const struct ieee80211_rateset ural_rateset_11a =
176 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178static const struct ieee80211_rateset ural_rateset_11b =
179 { 4, { 2, 4, 11, 22 } };
180
181static const struct ieee80211_rateset ural_rateset_11g =
182 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184/*
185 * Default values for MAC registers; values taken from the reference driver.
186 */
187static const struct {
188 uint16_t reg;
189 uint16_t val;
190} ural_def_mac[] = {
191 { RAL_TXRX_CSR5, 0x8c8d },
192 { RAL_TXRX_CSR6, 0x8b8a },
193 { RAL_TXRX_CSR7, 0x8687 },
194 { RAL_TXRX_CSR8, 0x0085 },
195 { RAL_MAC_CSR13, 0x1111 },
196 { RAL_MAC_CSR14, 0x1e11 },
197 { RAL_TXRX_CSR21, 0xe78f },
198 { RAL_MAC_CSR9, 0xff1d },
199 { RAL_MAC_CSR11, 0x0002 },
200 { RAL_MAC_CSR22, 0x0053 },
201 { RAL_MAC_CSR15, 0x0000 },
202 { RAL_MAC_CSR8, 0x0780 },
203 { RAL_TXRX_CSR19, 0x0000 },
204 { RAL_TXRX_CSR18, 0x005a },
205 { RAL_PHY_CSR2, 0x0000 },
206 { RAL_TXRX_CSR0, 0x1ec0 },
207 { RAL_PHY_CSR4, 0x000f }
208};
209
210/*
211 * Default values for BBP registers; values taken from the reference driver.
212 */
213static const struct {
214 uint8_t reg;
215 uint8_t val;
216} ural_def_bbp[] = {
217 { 3, 0x02 },
218 { 4, 0x19 },
219 { 14, 0x1c },
220 { 15, 0x30 },
221 { 16, 0xac },
222 { 17, 0x48 },
223 { 18, 0x18 },
224 { 19, 0xff },
225 { 20, 0x1e },
226 { 21, 0x08 },
227 { 22, 0x08 },
228 { 23, 0x08 },
229 { 24, 0x80 },
230 { 25, 0x50 },
231 { 26, 0x08 },
232 { 27, 0x23 },
233 { 30, 0x10 },
234 { 31, 0x2b },
235 { 32, 0xb9 },
236 { 34, 0x12 },
237 { 35, 0x50 },
238 { 39, 0xc4 },
239 { 40, 0x02 },
240 { 41, 0x60 },
241 { 53, 0x10 },
242 { 54, 0x18 },
243 { 56, 0x08 },
244 { 57, 0x10 },
245 { 58, 0x08 },
246 { 61, 0x60 },
247 { 62, 0x10 },
248 { 75, 0xff }
249};
250
251/*
252 * Default values for RF register R2 indexed by channel numbers.
253 */
254static const uint32_t ural_rf2522_r2[] = {
255 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
256 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
257};
258
259static const uint32_t ural_rf2523_r2[] = {
260 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
261 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
262};
263
264static const uint32_t ural_rf2524_r2[] = {
265 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
266 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
267};
268
269static const uint32_t ural_rf2525_r2[] = {
270 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
271 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
272};
273
274static const uint32_t ural_rf2525_hi_r2[] = {
275 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
276 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
277};
278
279static const uint32_t ural_rf2525e_r2[] = {
280 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
281 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
282};
283
284static const uint32_t ural_rf2526_hi_r2[] = {
285 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
286 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
287};
288
289static const uint32_t ural_rf2526_r2[] = {
290 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
291 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
292};
293
294/*
295 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
296 * values taken from the reference driver.
297 */
298static const struct {
299 uint8_t chan;
300 uint32_t r1;
301 uint32_t r2;
302 uint32_t r4;
303} ural_rf5222[] = {
304 { 1, 0x08808, 0x0044d, 0x00282 },
305 { 2, 0x08808, 0x0044e, 0x00282 },
306 { 3, 0x08808, 0x0044f, 0x00282 },
307 { 4, 0x08808, 0x00460, 0x00282 },
308 { 5, 0x08808, 0x00461, 0x00282 },
309 { 6, 0x08808, 0x00462, 0x00282 },
310 { 7, 0x08808, 0x00463, 0x00282 },
311 { 8, 0x08808, 0x00464, 0x00282 },
312 { 9, 0x08808, 0x00465, 0x00282 },
313 { 10, 0x08808, 0x00466, 0x00282 },
314 { 11, 0x08808, 0x00467, 0x00282 },
315 { 12, 0x08808, 0x00468, 0x00282 },
316 { 13, 0x08808, 0x00469, 0x00282 },
317 { 14, 0x08808, 0x0046b, 0x00286 },
318
319 { 36, 0x08804, 0x06225, 0x00287 },
320 { 40, 0x08804, 0x06226, 0x00287 },
321 { 44, 0x08804, 0x06227, 0x00287 },
322 { 48, 0x08804, 0x06228, 0x00287 },
323 { 52, 0x08804, 0x06229, 0x00287 },
324 { 56, 0x08804, 0x0622a, 0x00287 },
325 { 60, 0x08804, 0x0622b, 0x00287 },
326 { 64, 0x08804, 0x0622c, 0x00287 },
327
328 { 100, 0x08804, 0x02200, 0x00283 },
329 { 104, 0x08804, 0x02201, 0x00283 },
330 { 108, 0x08804, 0x02202, 0x00283 },
331 { 112, 0x08804, 0x02203, 0x00283 },
332 { 116, 0x08804, 0x02204, 0x00283 },
333 { 120, 0x08804, 0x02205, 0x00283 },
334 { 124, 0x08804, 0x02206, 0x00283 },
335 { 128, 0x08804, 0x02207, 0x00283 },
336 { 132, 0x08804, 0x02208, 0x00283 },
337 { 136, 0x08804, 0x02209, 0x00283 },
338 { 140, 0x08804, 0x0220a, 0x00283 },
339
340 { 149, 0x08808, 0x02429, 0x00281 },
341 { 153, 0x08808, 0x0242b, 0x00281 },
342 { 157, 0x08808, 0x0242d, 0x00281 },
343 { 161, 0x08808, 0x0242f, 0x00281 }
344};
345
346int ural_match(device_t, cfdata_t, void *);
347void ural_attach(device_t, device_t, void *);
348int ural_detach(device_t, int);
349int ural_activate(device_t, enum devact);
350extern struct cfdriver ural_cd;
351CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
352 ural_detach, ural_activate);
353
354int
355ural_match(device_t parent, cfdata_t match, void *aux)
356{
357 struct usb_attach_arg *uaa = aux;
358
359 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
360 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
361}
362
363void
364ural_attach(device_t parent, device_t self, void *aux)
365{
366 struct ural_softc *sc = device_private(self);
367 struct usb_attach_arg *uaa = aux;
368 struct ieee80211com *ic = &sc->sc_ic;
369 struct ifnet *ifp = &sc->sc_if;
370 usb_interface_descriptor_t *id;
371 usb_endpoint_descriptor_t *ed;
372 usbd_status error;
373 char *devinfop;
374 int i;
375
376 sc->sc_dev = self;
377 sc->sc_udev = uaa->uaa_device;
378
379 aprint_naive("\n");
380 aprint_normal("\n");
381
382 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
383 aprint_normal_dev(self, "%s\n", devinfop);
384 usbd_devinfo_free(devinfop);
385
386 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
387 if (error != 0) {
388 aprint_error_dev(self, "failed to set configuration"
389 ", err=%s\n", usbd_errstr(error));
390 return;
391 }
392
393 /* get the first interface handle */
394 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
395 &sc->sc_iface);
396 if (error != 0) {
397 aprint_error_dev(self, "could not get interface handle\n");
398 return;
399 }
400
401 /*
402 * Find endpoints.
403 */
404 id = usbd_get_interface_descriptor(sc->sc_iface);
405
406 sc->sc_rx_no = sc->sc_tx_no = -1;
407 for (i = 0; i < id->bNumEndpoints; i++) {
408 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
409 if (ed == NULL) {
410 aprint_error_dev(self,
411 "no endpoint descriptor for %d\n", i);
412 return;
413 }
414
415 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
416 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
417 sc->sc_rx_no = ed->bEndpointAddress;
418 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
419 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
420 sc->sc_tx_no = ed->bEndpointAddress;
421 }
422 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
423 aprint_error_dev(self, "missing endpoint\n");
424 return;
425 }
426
427 usb_init_task(&sc->sc_task, ural_task, sc, 0);
428 callout_init(&sc->sc_scan_ch, 0);
429 sc->amrr.amrr_min_success_threshold = 1;
430 sc->amrr.amrr_max_success_threshold = 15;
431 callout_init(&sc->sc_amrr_ch, 0);
432
433 /* retrieve RT2570 rev. no */
434 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
435
436 /* retrieve MAC address and various other things from EEPROM */
437 ural_read_eeprom(sc);
438
439 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
440 sc->asic_rev, ural_get_rf(sc->rf_rev));
441
442 ifp->if_softc = sc;
443 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
444 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
445 ifp->if_init = ural_init;
446 ifp->if_ioctl = ural_ioctl;
447 ifp->if_start = ural_start;
448 ifp->if_watchdog = ural_watchdog;
449 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
450 IFQ_SET_READY(&ifp->if_snd);
451
452 ic->ic_ifp = ifp;
453 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
454 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
455 ic->ic_state = IEEE80211_S_INIT;
456
457 /* set device capabilities */
458 ic->ic_caps =
459 IEEE80211_C_IBSS | /* IBSS mode supported */
460 IEEE80211_C_MONITOR | /* monitor mode supported */
461 IEEE80211_C_HOSTAP | /* HostAp mode supported */
462 IEEE80211_C_TXPMGT | /* tx power management */
463 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
464 IEEE80211_C_SHSLOT | /* short slot time supported */
465 IEEE80211_C_WPA; /* 802.11i */
466
467 if (sc->rf_rev == RAL_RF_5222) {
468 /* set supported .11a rates */
469 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
470
471 /* set supported .11a channels */
472 for (i = 36; i <= 64; i += 4) {
473 ic->ic_channels[i].ic_freq =
474 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
475 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
476 }
477 for (i = 100; i <= 140; i += 4) {
478 ic->ic_channels[i].ic_freq =
479 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
480 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
481 }
482 for (i = 149; i <= 161; i += 4) {
483 ic->ic_channels[i].ic_freq =
484 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
485 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
486 }
487 }
488
489 /* set supported .11b and .11g rates */
490 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
491 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
492
493 /* set supported .11b and .11g channels (1 through 14) */
494 for (i = 1; i <= 14; i++) {
495 ic->ic_channels[i].ic_freq =
496 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
497 ic->ic_channels[i].ic_flags =
498 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
499 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
500 }
501
502 if_attach(ifp);
503 ieee80211_ifattach(ic);
504 ic->ic_reset = ural_reset;
505
506 /* override state transition machine */
507 sc->sc_newstate = ic->ic_newstate;
508 ic->ic_newstate = ural_newstate;
509 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
510
511 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
512 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
513
514 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
515 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
516 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
517
518 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
519 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
520 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
521
522 ieee80211_announce(ic);
523
524 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
525
526 if (!pmf_device_register(self, NULL, NULL))
527 aprint_error_dev(self, "couldn't establish power handler\n");
528
529 return;
530}
531
532int
533ural_detach(device_t self, int flags)
534{
535 struct ural_softc *sc = device_private(self);
536 struct ieee80211com *ic = &sc->sc_ic;
537 struct ifnet *ifp = &sc->sc_if;
538 int s;
539
540 pmf_device_deregister(self);
541
542 s = splusb();
543
544 ural_stop(ifp, 1);
545 usb_rem_task(sc->sc_udev, &sc->sc_task);
546 callout_stop(&sc->sc_scan_ch);
547 callout_stop(&sc->sc_amrr_ch);
548
549 bpf_detach(ifp);
550 ieee80211_ifdetach(ic);
551 if_detach(ifp);
552
553 splx(s);
554
555 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
556
557 return 0;
558}
559
560Static int
561ural_alloc_tx_list(struct ural_softc *sc)
562{
563 struct ural_tx_data *data;
564 int i, error;
565
566 sc->tx_queued = 0;
567
568 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
569 data = &sc->tx_data[i];
570
571 data->sc = sc;
572 error = usbd_create_xfer(sc->sc_tx_pipeh,
573 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
574 &data->xfer);
575 if (error) {
576 printf("%s: could not allocate tx xfer\n",
577 device_xname(sc->sc_dev));
578 goto fail;
579 }
580
581 data->buf = usbd_get_buffer(data->xfer);
582 }
583
584 return 0;
585
586fail: ural_free_tx_list(sc);
587 return error;
588}
589
590Static void
591ural_free_tx_list(struct ural_softc *sc)
592{
593 struct ural_tx_data *data;
594 int i;
595
596 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
597 data = &sc->tx_data[i];
598
599 if (data->xfer != NULL) {
600 usbd_destroy_xfer(data->xfer);
601 data->xfer = NULL;
602 }
603
604 if (data->ni != NULL) {
605 ieee80211_free_node(data->ni);
606 data->ni = NULL;
607 }
608 }
609}
610
611Static int
612ural_alloc_rx_list(struct ural_softc *sc)
613{
614 struct ural_rx_data *data;
615 int i, error;
616
617 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
618 data = &sc->rx_data[i];
619
620 data->sc = sc;
621
622 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
623 USBD_SHORT_XFER_OK, 0, &data->xfer);
624 if (error) {
625 printf("%s: could not allocate rx xfer\n",
626 device_xname(sc->sc_dev));
627 goto fail;
628 }
629
630 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
631 if (data->m == NULL) {
632 printf("%s: could not allocate rx mbuf\n",
633 device_xname(sc->sc_dev));
634 error = ENOMEM;
635 goto fail;
636 }
637
638 MCLGET(data->m, M_DONTWAIT);
639 if (!(data->m->m_flags & M_EXT)) {
640 printf("%s: could not allocate rx mbuf cluster\n",
641 device_xname(sc->sc_dev));
642 error = ENOMEM;
643 goto fail;
644 }
645
646 data->buf = mtod(data->m, uint8_t *);
647 }
648
649 return 0;
650
651fail: ural_free_tx_list(sc);
652 return error;
653}
654
655Static void
656ural_free_rx_list(struct ural_softc *sc)
657{
658 struct ural_rx_data *data;
659 int i;
660
661 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
662 data = &sc->rx_data[i];
663
664 if (data->xfer != NULL) {
665 usbd_destroy_xfer(data->xfer);
666 data->xfer = NULL;
667 }
668
669 if (data->m != NULL) {
670 m_freem(data->m);
671 data->m = NULL;
672 }
673 }
674}
675
676Static int
677ural_media_change(struct ifnet *ifp)
678{
679 int error;
680
681 error = ieee80211_media_change(ifp);
682 if (error != ENETRESET)
683 return error;
684
685 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
686 ural_init(ifp);
687
688 return 0;
689}
690
691/*
692 * This function is called periodically (every 200ms) during scanning to
693 * switch from one channel to another.
694 */
695Static void
696ural_next_scan(void *arg)
697{
698 struct ural_softc *sc = arg;
699 struct ieee80211com *ic = &sc->sc_ic;
700
701 if (ic->ic_state == IEEE80211_S_SCAN)
702 ieee80211_next_scan(ic);
703}
704
705Static void
706ural_task(void *arg)
707{
708 struct ural_softc *sc = arg;
709 struct ieee80211com *ic = &sc->sc_ic;
710 enum ieee80211_state ostate;
711 struct ieee80211_node *ni;
712 struct mbuf *m;
713
714 ostate = ic->ic_state;
715
716 switch (sc->sc_state) {
717 case IEEE80211_S_INIT:
718 if (ostate == IEEE80211_S_RUN) {
719 /* abort TSF synchronization */
720 ural_write(sc, RAL_TXRX_CSR19, 0);
721
722 /* force tx led to stop blinking */
723 ural_write(sc, RAL_MAC_CSR20, 0);
724 }
725 break;
726
727 case IEEE80211_S_SCAN:
728 ural_set_chan(sc, ic->ic_curchan);
729 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
730 break;
731
732 case IEEE80211_S_AUTH:
733 ural_set_chan(sc, ic->ic_curchan);
734 break;
735
736 case IEEE80211_S_ASSOC:
737 ural_set_chan(sc, ic->ic_curchan);
738 break;
739
740 case IEEE80211_S_RUN:
741 ural_set_chan(sc, ic->ic_curchan);
742
743 ni = ic->ic_bss;
744
745 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
746 ural_update_slot(ic->ic_ifp);
747 ural_set_txpreamble(sc);
748 ural_set_basicrates(sc);
749 ural_set_bssid(sc, ni->ni_bssid);
750 }
751
752 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
753 ic->ic_opmode == IEEE80211_M_IBSS) {
754 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
755 if (m == NULL) {
756 printf("%s: could not allocate beacon\n",
757 device_xname(sc->sc_dev));
758 return;
759 }
760
761 if (ural_tx_bcn(sc, m, ni) != 0) {
762 m_freem(m);
763 printf("%s: could not send beacon\n",
764 device_xname(sc->sc_dev));
765 return;
766 }
767
768 /* beacon is no longer needed */
769 m_freem(m);
770 }
771
772 /* make tx led blink on tx (controlled by ASIC) */
773 ural_write(sc, RAL_MAC_CSR20, 1);
774
775 if (ic->ic_opmode != IEEE80211_M_MONITOR)
776 ural_enable_tsf_sync(sc);
777
778 /* enable automatic rate adaptation in STA mode */
779 if (ic->ic_opmode == IEEE80211_M_STA &&
780 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
781 ural_amrr_start(sc, ni);
782
783 break;
784 }
785
786 sc->sc_newstate(ic, sc->sc_state, -1);
787}
788
789Static int
790ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
791 int arg)
792{
793 struct ural_softc *sc = ic->ic_ifp->if_softc;
794
795 usb_rem_task(sc->sc_udev, &sc->sc_task);
796 callout_stop(&sc->sc_scan_ch);
797 callout_stop(&sc->sc_amrr_ch);
798
799 /* do it in a process context */
800 sc->sc_state = nstate;
801 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
802
803 return 0;
804}
805
806/* quickly determine if a given rate is CCK or OFDM */
807#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
808
809#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
810#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
811
812#define RAL_SIFS 10 /* us */
813
814#define RAL_RXTX_TURNAROUND 5 /* us */
815
816/*
817 * This function is only used by the Rx radiotap code.
818 */
819Static int
820ural_rxrate(struct ural_rx_desc *desc)
821{
822 if (le32toh(desc->flags) & RAL_RX_OFDM) {
823 /* reverse function of ural_plcp_signal */
824 switch (desc->rate) {
825 case 0xb: return 12;
826 case 0xf: return 18;
827 case 0xa: return 24;
828 case 0xe: return 36;
829 case 0x9: return 48;
830 case 0xd: return 72;
831 case 0x8: return 96;
832 case 0xc: return 108;
833 }
834 } else {
835 if (desc->rate == 10)
836 return 2;
837 if (desc->rate == 20)
838 return 4;
839 if (desc->rate == 55)
840 return 11;
841 if (desc->rate == 110)
842 return 22;
843 }
844 return 2; /* should not get there */
845}
846
847Static void
848ural_txeof(struct usbd_xfer *xfer, void * priv,
849 usbd_status status)
850{
851 struct ural_tx_data *data = priv;
852 struct ural_softc *sc = data->sc;
853 struct ifnet *ifp = &sc->sc_if;
854 int s;
855
856 if (status != USBD_NORMAL_COMPLETION) {
857 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
858 return;
859
860 printf("%s: could not transmit buffer: %s\n",
861 device_xname(sc->sc_dev), usbd_errstr(status));
862
863 if (status == USBD_STALLED)
864 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
865
866 ifp->if_oerrors++;
867 return;
868 }
869
870 s = splnet();
871
872 m_freem(data->m);
873 data->m = NULL;
874 ieee80211_free_node(data->ni);
875 data->ni = NULL;
876
877 sc->tx_queued--;
878 ifp->if_opackets++;
879
880 DPRINTFN(10, ("tx done\n"));
881
882 sc->sc_tx_timer = 0;
883 ifp->if_flags &= ~IFF_OACTIVE;
884 ural_start(ifp);
885
886 splx(s);
887}
888
889Static void
890ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
891{
892 struct ural_rx_data *data = priv;
893 struct ural_softc *sc = data->sc;
894 struct ieee80211com *ic = &sc->sc_ic;
895 struct ifnet *ifp = &sc->sc_if;
896 struct ural_rx_desc *desc;
897 struct ieee80211_frame *wh;
898 struct ieee80211_node *ni;
899 struct mbuf *mnew, *m;
900 int s, len;
901
902 if (status != USBD_NORMAL_COMPLETION) {
903 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
904 return;
905
906 if (status == USBD_STALLED)
907 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
908 goto skip;
909 }
910
911 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
912
913 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
914 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
915 len));
916 ifp->if_ierrors++;
917 goto skip;
918 }
919
920 /* rx descriptor is located at the end */
921 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
922
923 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
924 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
925 /*
926 * This should not happen since we did not request to receive
927 * those frames when we filled RAL_TXRX_CSR2.
928 */
929 DPRINTFN(5, ("PHY or CRC error\n"));
930 ifp->if_ierrors++;
931 goto skip;
932 }
933
934 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
935 if (mnew == NULL) {
936 ifp->if_ierrors++;
937 goto skip;
938 }
939
940 MCLGET(mnew, M_DONTWAIT);
941 if (!(mnew->m_flags & M_EXT)) {
942 ifp->if_ierrors++;
943 m_freem(mnew);
944 goto skip;
945 }
946
947 m = data->m;
948 data->m = mnew;
949 data->buf = mtod(data->m, uint8_t *);
950
951 /* finalize mbuf */
952 m_set_rcvif(m, ifp);
953 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
954 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
955
956 s = splnet();
957
958 if (sc->sc_drvbpf != NULL) {
959 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
960
961 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
962 tap->wr_rate = ural_rxrate(desc);
963 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
964 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
965 tap->wr_antenna = sc->rx_ant;
966 tap->wr_antsignal = desc->rssi;
967
968 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
969 }
970
971 wh = mtod(m, struct ieee80211_frame *);
972 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
973
974 /* send the frame to the 802.11 layer */
975 ieee80211_input(ic, m, ni, desc->rssi, 0);
976
977 /* node is no longer needed */
978 ieee80211_free_node(ni);
979
980 splx(s);
981
982 DPRINTFN(15, ("rx done\n"));
983
984skip: /* setup a new transfer */
985 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
986 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
987 usbd_transfer(xfer);
988}
989
990/*
991 * Return the expected ack rate for a frame transmitted at rate `rate'.
992 * XXX: this should depend on the destination node basic rate set.
993 */
994Static int
995ural_ack_rate(struct ieee80211com *ic, int rate)
996{
997 switch (rate) {
998 /* CCK rates */
999 case 2:
1000 return 2;
1001 case 4:
1002 case 11:
1003 case 22:
1004 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1005
1006 /* OFDM rates */
1007 case 12:
1008 case 18:
1009 return 12;
1010 case 24:
1011 case 36:
1012 return 24;
1013 case 48:
1014 case 72:
1015 case 96:
1016 case 108:
1017 return 48;
1018 }
1019
1020 /* default to 1Mbps */
1021 return 2;
1022}
1023
1024/*
1025 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1026 * The function automatically determines the operating mode depending on the
1027 * given rate. `flags' indicates whether short preamble is in use or not.
1028 */
1029Static uint16_t
1030ural_txtime(int len, int rate, uint32_t flags)
1031{
1032 uint16_t txtime;
1033
1034 if (RAL_RATE_IS_OFDM(rate)) {
1035 /* IEEE Std 802.11g-2003, pp. 37 */
1036 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1037 txtime = 16 + 4 + 4 * txtime + 6;
1038 } else {
1039 /* IEEE Std 802.11b-1999, pp. 28 */
1040 txtime = (16 * len + rate - 1) / rate;
1041 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1042 txtime += 72 + 24;
1043 else
1044 txtime += 144 + 48;
1045 }
1046 return txtime;
1047}
1048
1049Static uint8_t
1050ural_plcp_signal(int rate)
1051{
1052 switch (rate) {
1053 /* CCK rates (returned values are device-dependent) */
1054 case 2: return 0x0;
1055 case 4: return 0x1;
1056 case 11: return 0x2;
1057 case 22: return 0x3;
1058
1059 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1060 case 12: return 0xb;
1061 case 18: return 0xf;
1062 case 24: return 0xa;
1063 case 36: return 0xe;
1064 case 48: return 0x9;
1065 case 72: return 0xd;
1066 case 96: return 0x8;
1067 case 108: return 0xc;
1068
1069 /* unsupported rates (should not get there) */
1070 default: return 0xff;
1071 }
1072}
1073
1074Static void
1075ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1076 uint32_t flags, int len, int rate)
1077{
1078 struct ieee80211com *ic = &sc->sc_ic;
1079 uint16_t plcp_length;
1080 int remainder;
1081
1082 desc->flags = htole32(flags);
1083 desc->flags |= htole32(RAL_TX_NEWSEQ);
1084 desc->flags |= htole32(len << 16);
1085
1086 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1087 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1088
1089 /* setup PLCP fields */
1090 desc->plcp_signal = ural_plcp_signal(rate);
1091 desc->plcp_service = 4;
1092
1093 len += IEEE80211_CRC_LEN;
1094 if (RAL_RATE_IS_OFDM(rate)) {
1095 desc->flags |= htole32(RAL_TX_OFDM);
1096
1097 plcp_length = len & 0xfff;
1098 desc->plcp_length_hi = plcp_length >> 6;
1099 desc->plcp_length_lo = plcp_length & 0x3f;
1100 } else {
1101 plcp_length = (16 * len + rate - 1) / rate;
1102 if (rate == 22) {
1103 remainder = (16 * len) % 22;
1104 if (remainder != 0 && remainder < 7)
1105 desc->plcp_service |= RAL_PLCP_LENGEXT;
1106 }
1107 desc->plcp_length_hi = plcp_length >> 8;
1108 desc->plcp_length_lo = plcp_length & 0xff;
1109
1110 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1111 desc->plcp_signal |= 0x08;
1112 }
1113
1114 desc->iv = 0;
1115 desc->eiv = 0;
1116}
1117
1118#define RAL_TX_TIMEOUT 5000
1119
1120Static int
1121ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1122{
1123 struct ural_tx_desc *desc;
1124 struct usbd_xfer *xfer;
1125 uint8_t cmd = 0;
1126 usbd_status error;
1127 uint8_t *buf;
1128 int xferlen, rate;
1129
1130 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1131
1132 /* xfer length needs to be a multiple of two! */
1133 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1134
1135 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1136 USBD_FORCE_SHORT_XFER, 0, &xfer);
1137 if (error)
1138 return error;
1139
1140 buf = usbd_get_buffer(xfer);
1141
1142 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1143 RAL_TX_TIMEOUT, NULL);
1144
1145 error = usbd_sync_transfer(xfer);
1146 if (error != 0) {
1147 usbd_destroy_xfer(xfer);
1148 return error;
1149 }
1150
1151 desc = (struct ural_tx_desc *)buf;
1152
1153 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1154 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1155 m0->m_pkthdr.len, rate);
1156
1157 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1158 m0->m_pkthdr.len, rate, xferlen));
1159
1160 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1161 RAL_TX_TIMEOUT, NULL);
1162
1163 error = usbd_sync_transfer(xfer);
1164 usbd_destroy_xfer(xfer);
1165
1166 return error;
1167}
1168
1169Static int
1170ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1171{
1172 struct ieee80211com *ic = &sc->sc_ic;
1173 struct ural_tx_desc *desc;
1174 struct ural_tx_data *data;
1175 struct ieee80211_frame *wh;
1176 struct ieee80211_key *k;
1177 uint32_t flags = 0;
1178 uint16_t dur;
1179 usbd_status error;
1180 int xferlen, rate;
1181
1182 data = &sc->tx_data[0];
1183 desc = (struct ural_tx_desc *)data->buf;
1184
1185 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1186
1187 wh = mtod(m0, struct ieee80211_frame *);
1188
1189 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1190 k = ieee80211_crypto_encap(ic, ni, m0);
1191 if (k == NULL) {
1192 m_freem(m0);
1193 return ENOBUFS;
1194 }
1195 }
1196
1197 data->m = m0;
1198 data->ni = ni;
1199
1200 wh = mtod(m0, struct ieee80211_frame *);
1201
1202 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1203 flags |= RAL_TX_ACK;
1204
1205 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1206 *(uint16_t *)wh->i_dur = htole16(dur);
1207
1208 /* tell hardware to add timestamp for probe responses */
1209 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1210 IEEE80211_FC0_TYPE_MGT &&
1211 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1212 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1213 flags |= RAL_TX_TIMESTAMP;
1214 }
1215
1216 if (sc->sc_drvbpf != NULL) {
1217 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1218
1219 tap->wt_flags = 0;
1220 tap->wt_rate = rate;
1221 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1222 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1223 tap->wt_antenna = sc->tx_ant;
1224
1225 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1226 }
1227
1228 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1229 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1230
1231 /* align end on a 2-bytes boundary */
1232 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1233
1234 /*
1235 * No space left in the last URB to store the extra 2 bytes, force
1236 * sending of another URB.
1237 */
1238 if ((xferlen % 64) == 0)
1239 xferlen += 2;
1240
1241 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1242 m0->m_pkthdr.len, rate, xferlen));
1243
1244 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1245 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1246
1247 error = usbd_transfer(data->xfer);
1248 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1249 m_freem(m0);
1250 return error;
1251 }
1252
1253 sc->tx_queued++;
1254
1255 return 0;
1256}
1257
1258Static int
1259ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1260{
1261 struct ieee80211com *ic = &sc->sc_ic;
1262 struct ural_tx_desc *desc;
1263 struct ural_tx_data *data;
1264 struct ieee80211_frame *wh;
1265 struct ieee80211_key *k;
1266 uint32_t flags = 0;
1267 uint16_t dur;
1268 usbd_status error;
1269 int xferlen, rate;
1270
1271 wh = mtod(m0, struct ieee80211_frame *);
1272
1273 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1274 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1275 else
1276 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1277
1278 rate &= IEEE80211_RATE_VAL;
1279
1280 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1281 k = ieee80211_crypto_encap(ic, ni, m0);
1282 if (k == NULL) {
1283 m_freem(m0);
1284 return ENOBUFS;
1285 }
1286
1287 /* packet header may have moved, reset our local pointer */
1288 wh = mtod(m0, struct ieee80211_frame *);
1289 }
1290
1291 data = &sc->tx_data[0];
1292 desc = (struct ural_tx_desc *)data->buf;
1293
1294 data->m = m0;
1295 data->ni = ni;
1296
1297 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1298 flags |= RAL_TX_ACK;
1299 flags |= RAL_TX_RETRY(7);
1300
1301 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1302 ic->ic_flags) + RAL_SIFS;
1303 *(uint16_t *)wh->i_dur = htole16(dur);
1304 }
1305
1306 if (sc->sc_drvbpf != NULL) {
1307 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1308
1309 tap->wt_flags = 0;
1310 tap->wt_rate = rate;
1311 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1312 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1313 tap->wt_antenna = sc->tx_ant;
1314
1315 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1316 }
1317
1318 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1319 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1320
1321 /* align end on a 2-bytes boundary */
1322 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1323
1324 /*
1325 * No space left in the last URB to store the extra 2 bytes, force
1326 * sending of another URB.
1327 */
1328 if ((xferlen % 64) == 0)
1329 xferlen += 2;
1330
1331 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1332 m0->m_pkthdr.len, rate, xferlen));
1333 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1334 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1335
1336 error = usbd_transfer(data->xfer);
1337 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1338 return error;
1339
1340 sc->tx_queued++;
1341
1342 return 0;
1343}
1344
1345Static void
1346ural_start(struct ifnet *ifp)
1347{
1348 struct ural_softc *sc = ifp->if_softc;
1349 struct ieee80211com *ic = &sc->sc_ic;
1350 struct mbuf *m0;
1351 struct ether_header *eh;
1352 struct ieee80211_node *ni;
1353
1354 for (;;) {
1355 IF_POLL(&ic->ic_mgtq, m0);
1356 if (m0 != NULL) {
1357 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1358 ifp->if_flags |= IFF_OACTIVE;
1359 break;
1360 }
1361 IF_DEQUEUE(&ic->ic_mgtq, m0);
1362
1363 ni = M_GETCTX(m0, struct ieee80211_node *);
1364 M_CLEARCTX(m0);
1365 bpf_mtap3(ic->ic_rawbpf, m0);
1366 if (ural_tx_mgt(sc, m0, ni) != 0)
1367 break;
1368
1369 } else {
1370 if (ic->ic_state != IEEE80211_S_RUN)
1371 break;
1372 IFQ_DEQUEUE(&ifp->if_snd, m0);
1373 if (m0 == NULL)
1374 break;
1375 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1376 IF_PREPEND(&ifp->if_snd, m0);
1377 ifp->if_flags |= IFF_OACTIVE;
1378 break;
1379 }
1380
1381 if (m0->m_len < sizeof(struct ether_header) &&
1382 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1383 continue;
1384
1385 eh = mtod(m0, struct ether_header *);
1386 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1387 if (ni == NULL) {
1388 m_freem(m0);
1389 continue;
1390 }
1391 bpf_mtap(ifp, m0);
1392 m0 = ieee80211_encap(ic, m0, ni);
1393 if (m0 == NULL) {
1394 ieee80211_free_node(ni);
1395 continue;
1396 }
1397 bpf_mtap3(ic->ic_rawbpf, m0);
1398 if (ural_tx_data(sc, m0, ni) != 0) {
1399 ieee80211_free_node(ni);
1400 ifp->if_oerrors++;
1401 break;
1402 }
1403 }
1404
1405 sc->sc_tx_timer = 5;
1406 ifp->if_timer = 1;
1407 }
1408}
1409
1410Static void
1411ural_watchdog(struct ifnet *ifp)
1412{
1413 struct ural_softc *sc = ifp->if_softc;
1414 struct ieee80211com *ic = &sc->sc_ic;
1415
1416 ifp->if_timer = 0;
1417
1418 if (sc->sc_tx_timer > 0) {
1419 if (--sc->sc_tx_timer == 0) {
1420 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1421 /*ural_init(sc); XXX needs a process context! */
1422 ifp->if_oerrors++;
1423 return;
1424 }
1425 ifp->if_timer = 1;
1426 }
1427
1428 ieee80211_watchdog(ic);
1429}
1430
1431/*
1432 * This function allows for fast channel switching in monitor mode (used by
1433 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1434 * generate a new beacon frame.
1435 */
1436Static int
1437ural_reset(struct ifnet *ifp)
1438{
1439 struct ural_softc *sc = ifp->if_softc;
1440 struct ieee80211com *ic = &sc->sc_ic;
1441
1442 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1443 return ENETRESET;
1444
1445 ural_set_chan(sc, ic->ic_curchan);
1446
1447 return 0;
1448}
1449
1450Static int
1451ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1452{
1453#define IS_RUNNING(ifp) \
1454 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1455
1456 struct ural_softc *sc = ifp->if_softc;
1457 struct ieee80211com *ic = &sc->sc_ic;
1458 int s, error = 0;
1459
1460 s = splnet();
1461
1462 switch (cmd) {
1463 case SIOCSIFFLAGS:
1464 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1465 break;
1466 /* XXX re-use ether_ioctl() */
1467 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1468 case IFF_UP|IFF_RUNNING:
1469 ural_update_promisc(sc);
1470 break;
1471 case IFF_UP:
1472 ural_init(ifp);
1473 break;
1474 case IFF_RUNNING:
1475 ural_stop(ifp, 1);
1476 break;
1477 case 0:
1478 break;
1479 }
1480 break;
1481
1482 case SIOCADDMULTI:
1483 case SIOCDELMULTI:
1484 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1485 error = 0;
1486 }
1487 break;
1488
1489 default:
1490 error = ieee80211_ioctl(ic, cmd, data);
1491 }
1492
1493 if (error == ENETRESET) {
1494 if (IS_RUNNING(ifp) &&
1495 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1496 ural_init(ifp);
1497 error = 0;
1498 }
1499
1500 splx(s);
1501
1502 return error;
1503#undef IS_RUNNING
1504}
1505
1506Static void
1507ural_set_testmode(struct ural_softc *sc)
1508{
1509 usb_device_request_t req;
1510 usbd_status error;
1511
1512 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1513 req.bRequest = RAL_VENDOR_REQUEST;
1514 USETW(req.wValue, 4);
1515 USETW(req.wIndex, 1);
1516 USETW(req.wLength, 0);
1517
1518 error = usbd_do_request(sc->sc_udev, &req, NULL);
1519 if (error != 0) {
1520 printf("%s: could not set test mode: %s\n",
1521 device_xname(sc->sc_dev), usbd_errstr(error));
1522 }
1523}
1524
1525Static void
1526ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1527{
1528 usb_device_request_t req;
1529 usbd_status error;
1530
1531 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1532 req.bRequest = RAL_READ_EEPROM;
1533 USETW(req.wValue, 0);
1534 USETW(req.wIndex, addr);
1535 USETW(req.wLength, len);
1536
1537 error = usbd_do_request(sc->sc_udev, &req, buf);
1538 if (error != 0) {
1539 printf("%s: could not read EEPROM: %s\n",
1540 device_xname(sc->sc_dev), usbd_errstr(error));
1541 }
1542}
1543
1544Static uint16_t
1545ural_read(struct ural_softc *sc, uint16_t reg)
1546{
1547 usb_device_request_t req;
1548 usbd_status error;
1549 uint16_t val;
1550
1551 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1552 req.bRequest = RAL_READ_MAC;
1553 USETW(req.wValue, 0);
1554 USETW(req.wIndex, reg);
1555 USETW(req.wLength, sizeof(uint16_t));
1556
1557 error = usbd_do_request(sc->sc_udev, &req, &val);
1558 if (error != 0) {
1559 printf("%s: could not read MAC register: %s\n",
1560 device_xname(sc->sc_dev), usbd_errstr(error));
1561 return 0;
1562 }
1563
1564 return le16toh(val);
1565}
1566
1567Static void
1568ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1569{
1570 usb_device_request_t req;
1571 usbd_status error;
1572
1573 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1574 req.bRequest = RAL_READ_MULTI_MAC;
1575 USETW(req.wValue, 0);
1576 USETW(req.wIndex, reg);
1577 USETW(req.wLength, len);
1578
1579 error = usbd_do_request(sc->sc_udev, &req, buf);
1580 if (error != 0) {
1581 printf("%s: could not read MAC register: %s\n",
1582 device_xname(sc->sc_dev), usbd_errstr(error));
1583 }
1584}
1585
1586Static void
1587ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1588{
1589 usb_device_request_t req;
1590 usbd_status error;
1591
1592 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1593 req.bRequest = RAL_WRITE_MAC;
1594 USETW(req.wValue, val);
1595 USETW(req.wIndex, reg);
1596 USETW(req.wLength, 0);
1597
1598 error = usbd_do_request(sc->sc_udev, &req, NULL);
1599 if (error != 0) {
1600 printf("%s: could not write MAC register: %s\n",
1601 device_xname(sc->sc_dev), usbd_errstr(error));
1602 }
1603}
1604
1605Static void
1606ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1607{
1608 usb_device_request_t req;
1609 usbd_status error;
1610
1611 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1612 req.bRequest = RAL_WRITE_MULTI_MAC;
1613 USETW(req.wValue, 0);
1614 USETW(req.wIndex, reg);
1615 USETW(req.wLength, len);
1616
1617 error = usbd_do_request(sc->sc_udev, &req, buf);
1618 if (error != 0) {
1619 printf("%s: could not write MAC register: %s\n",
1620 device_xname(sc->sc_dev), usbd_errstr(error));
1621 }
1622}
1623
1624Static void
1625ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1626{
1627 uint16_t tmp;
1628 int ntries;
1629
1630 for (ntries = 0; ntries < 5; ntries++) {
1631 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1632 break;
1633 }
1634 if (ntries == 5) {
1635 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1636 return;
1637 }
1638
1639 tmp = reg << 8 | val;
1640 ural_write(sc, RAL_PHY_CSR7, tmp);
1641}
1642
1643Static uint8_t
1644ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1645{
1646 uint16_t val;
1647 int ntries;
1648
1649 val = RAL_BBP_WRITE | reg << 8;
1650 ural_write(sc, RAL_PHY_CSR7, val);
1651
1652 for (ntries = 0; ntries < 5; ntries++) {
1653 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1654 break;
1655 }
1656 if (ntries == 5) {
1657 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1658 return 0;
1659 }
1660
1661 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1662}
1663
1664Static void
1665ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1666{
1667 uint32_t tmp;
1668 int ntries;
1669
1670 for (ntries = 0; ntries < 5; ntries++) {
1671 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1672 break;
1673 }
1674 if (ntries == 5) {
1675 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1676 return;
1677 }
1678
1679 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1680 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1681 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1682
1683 /* remember last written value in sc */
1684 sc->rf_regs[reg] = val;
1685
1686 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1687}
1688
1689Static void
1690ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1691{
1692 struct ieee80211com *ic = &sc->sc_ic;
1693 uint8_t power, tmp;
1694 u_int i, chan;
1695
1696 chan = ieee80211_chan2ieee(ic, c);
1697 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1698 return;
1699
1700 if (IEEE80211_IS_CHAN_2GHZ(c))
1701 power = min(sc->txpow[chan - 1], 31);
1702 else
1703 power = 31;
1704
1705 /* adjust txpower using ifconfig settings */
1706 power -= (100 - ic->ic_txpowlimit) / 8;
1707
1708 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1709
1710 switch (sc->rf_rev) {
1711 case RAL_RF_2522:
1712 ural_rf_write(sc, RAL_RF1, 0x00814);
1713 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1714 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1715 break;
1716
1717 case RAL_RF_2523:
1718 ural_rf_write(sc, RAL_RF1, 0x08804);
1719 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1720 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1721 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1722 break;
1723
1724 case RAL_RF_2524:
1725 ural_rf_write(sc, RAL_RF1, 0x0c808);
1726 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1727 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1728 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1729 break;
1730
1731 case RAL_RF_2525:
1732 ural_rf_write(sc, RAL_RF1, 0x08808);
1733 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1734 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1735 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1736
1737 ural_rf_write(sc, RAL_RF1, 0x08808);
1738 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1739 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1740 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1741 break;
1742
1743 case RAL_RF_2525E:
1744 ural_rf_write(sc, RAL_RF1, 0x08808);
1745 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1746 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1747 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1748 break;
1749
1750 case RAL_RF_2526:
1751 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1752 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1753 ural_rf_write(sc, RAL_RF1, 0x08804);
1754
1755 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1756 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1757 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1758 break;
1759
1760 /* dual-band RF */
1761 case RAL_RF_5222:
1762 for (i = 0; ural_rf5222[i].chan != chan; i++);
1763
1764 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1765 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1766 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1767 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1768 break;
1769 }
1770
1771 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1772 ic->ic_state != IEEE80211_S_SCAN) {
1773 /* set Japan filter bit for channel 14 */
1774 tmp = ural_bbp_read(sc, 70);
1775
1776 tmp &= ~RAL_JAPAN_FILTER;
1777 if (chan == 14)
1778 tmp |= RAL_JAPAN_FILTER;
1779
1780 ural_bbp_write(sc, 70, tmp);
1781
1782 /* clear CRC errors */
1783 ural_read(sc, RAL_STA_CSR0);
1784
1785 DELAY(10000);
1786 ural_disable_rf_tune(sc);
1787 }
1788}
1789
1790/*
1791 * Disable RF auto-tuning.
1792 */
1793Static void
1794ural_disable_rf_tune(struct ural_softc *sc)
1795{
1796 uint32_t tmp;
1797
1798 if (sc->rf_rev != RAL_RF_2523) {
1799 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1800 ural_rf_write(sc, RAL_RF1, tmp);
1801 }
1802
1803 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1804 ural_rf_write(sc, RAL_RF3, tmp);
1805
1806 DPRINTFN(2, ("disabling RF autotune\n"));
1807}
1808
1809/*
1810 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1811 * synchronization.
1812 */
1813Static void
1814ural_enable_tsf_sync(struct ural_softc *sc)
1815{
1816 struct ieee80211com *ic = &sc->sc_ic;
1817 uint16_t logcwmin, preload, tmp;
1818
1819 /* first, disable TSF synchronization */
1820 ural_write(sc, RAL_TXRX_CSR19, 0);
1821
1822 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1823 ural_write(sc, RAL_TXRX_CSR18, tmp);
1824
1825 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1826 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1827 tmp = logcwmin << 12 | preload;
1828 ural_write(sc, RAL_TXRX_CSR20, tmp);
1829
1830 /* finally, enable TSF synchronization */
1831 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1832 if (ic->ic_opmode == IEEE80211_M_STA)
1833 tmp |= RAL_ENABLE_TSF_SYNC(1);
1834 else
1835 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1836 ural_write(sc, RAL_TXRX_CSR19, tmp);
1837
1838 DPRINTF(("enabling TSF synchronization\n"));
1839}
1840
1841Static void
1842ural_update_slot(struct ifnet *ifp)
1843{
1844 struct ural_softc *sc = ifp->if_softc;
1845 struct ieee80211com *ic = &sc->sc_ic;
1846 uint16_t slottime, sifs, eifs;
1847
1848 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1849
1850 /*
1851 * These settings may sound a bit inconsistent but this is what the
1852 * reference driver does.
1853 */
1854 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1855 sifs = 16 - RAL_RXTX_TURNAROUND;
1856 eifs = 364;
1857 } else {
1858 sifs = 10 - RAL_RXTX_TURNAROUND;
1859 eifs = 64;
1860 }
1861
1862 ural_write(sc, RAL_MAC_CSR10, slottime);
1863 ural_write(sc, RAL_MAC_CSR11, sifs);
1864 ural_write(sc, RAL_MAC_CSR12, eifs);
1865}
1866
1867Static void
1868ural_set_txpreamble(struct ural_softc *sc)
1869{
1870 uint16_t tmp;
1871
1872 tmp = ural_read(sc, RAL_TXRX_CSR10);
1873
1874 tmp &= ~RAL_SHORT_PREAMBLE;
1875 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1876 tmp |= RAL_SHORT_PREAMBLE;
1877
1878 ural_write(sc, RAL_TXRX_CSR10, tmp);
1879}
1880
1881Static void
1882ural_set_basicrates(struct ural_softc *sc)
1883{
1884 struct ieee80211com *ic = &sc->sc_ic;
1885
1886 /* update basic rate set */
1887 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1888 /* 11b basic rates: 1, 2Mbps */
1889 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1890 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1891 /* 11a basic rates: 6, 12, 24Mbps */
1892 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1893 } else {
1894 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1895 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1896 }
1897}
1898
1899Static void
1900ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1901{
1902 uint16_t tmp;
1903
1904 tmp = bssid[0] | bssid[1] << 8;
1905 ural_write(sc, RAL_MAC_CSR5, tmp);
1906
1907 tmp = bssid[2] | bssid[3] << 8;
1908 ural_write(sc, RAL_MAC_CSR6, tmp);
1909
1910 tmp = bssid[4] | bssid[5] << 8;
1911 ural_write(sc, RAL_MAC_CSR7, tmp);
1912
1913 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1914}
1915
1916Static void
1917ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1918{
1919 uint16_t tmp;
1920
1921 tmp = addr[0] | addr[1] << 8;
1922 ural_write(sc, RAL_MAC_CSR2, tmp);
1923
1924 tmp = addr[2] | addr[3] << 8;
1925 ural_write(sc, RAL_MAC_CSR3, tmp);
1926
1927 tmp = addr[4] | addr[5] << 8;
1928 ural_write(sc, RAL_MAC_CSR4, tmp);
1929
1930 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1931}
1932
1933Static void
1934ural_update_promisc(struct ural_softc *sc)
1935{
1936 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1937 uint32_t tmp;
1938
1939 tmp = ural_read(sc, RAL_TXRX_CSR2);
1940
1941 tmp &= ~RAL_DROP_NOT_TO_ME;
1942 if (!(ifp->if_flags & IFF_PROMISC))
1943 tmp |= RAL_DROP_NOT_TO_ME;
1944
1945 ural_write(sc, RAL_TXRX_CSR2, tmp);
1946
1947 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1948 "entering" : "leaving"));
1949}
1950
1951Static const char *
1952ural_get_rf(int rev)
1953{
1954 switch (rev) {
1955 case RAL_RF_2522: return "RT2522";
1956 case RAL_RF_2523: return "RT2523";
1957 case RAL_RF_2524: return "RT2524";
1958 case RAL_RF_2525: return "RT2525";
1959 case RAL_RF_2525E: return "RT2525e";
1960 case RAL_RF_2526: return "RT2526";
1961 case RAL_RF_5222: return "RT5222";
1962 default: return "unknown";
1963 }
1964}
1965
1966Static void
1967ural_read_eeprom(struct ural_softc *sc)
1968{
1969 struct ieee80211com *ic = &sc->sc_ic;
1970 uint16_t val;
1971
1972 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1973 val = le16toh(val);
1974 sc->rf_rev = (val >> 11) & 0x7;
1975 sc->hw_radio = (val >> 10) & 0x1;
1976 sc->led_mode = (val >> 6) & 0x7;
1977 sc->rx_ant = (val >> 4) & 0x3;
1978 sc->tx_ant = (val >> 2) & 0x3;
1979 sc->nb_ant = val & 0x3;
1980
1981 /* read MAC address */
1982 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1983
1984 /* read default values for BBP registers */
1985 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1986
1987 /* read Tx power for all b/g channels */
1988 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1989}
1990
1991Static int
1992ural_bbp_init(struct ural_softc *sc)
1993{
1994 int i, ntries;
1995
1996 /* wait for BBP to be ready */
1997 for (ntries = 0; ntries < 100; ntries++) {
1998 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1999 break;
2000 DELAY(1000);
2001 }
2002 if (ntries == 100) {
2003 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2004 return EIO;
2005 }
2006
2007 /* initialize BBP registers to default values */
2008 for (i = 0; i < __arraycount(ural_def_bbp); i++)
2009 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2010
2011#if 0
2012 /* initialize BBP registers to values stored in EEPROM */
2013 for (i = 0; i < 16; i++) {
2014 if (sc->bbp_prom[i].reg == 0xff)
2015 continue;
2016 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2017 }
2018#endif
2019
2020 return 0;
2021}
2022
2023Static void
2024ural_set_txantenna(struct ural_softc *sc, int antenna)
2025{
2026 uint16_t tmp;
2027 uint8_t tx;
2028
2029 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2030 if (antenna == 1)
2031 tx |= RAL_BBP_ANTA;
2032 else if (antenna == 2)
2033 tx |= RAL_BBP_ANTB;
2034 else
2035 tx |= RAL_BBP_DIVERSITY;
2036
2037 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2038 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2039 sc->rf_rev == RAL_RF_5222)
2040 tx |= RAL_BBP_FLIPIQ;
2041
2042 ural_bbp_write(sc, RAL_BBP_TX, tx);
2043
2044 /* update values in PHY_CSR5 and PHY_CSR6 */
2045 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2046 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2047
2048 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2049 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2050}
2051
2052Static void
2053ural_set_rxantenna(struct ural_softc *sc, int antenna)
2054{
2055 uint8_t rx;
2056
2057 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2058 if (antenna == 1)
2059 rx |= RAL_BBP_ANTA;
2060 else if (antenna == 2)
2061 rx |= RAL_BBP_ANTB;
2062 else
2063 rx |= RAL_BBP_DIVERSITY;
2064
2065 /* need to force no I/Q flip for RF 2525e and 2526 */
2066 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2067 rx &= ~RAL_BBP_FLIPIQ;
2068
2069 ural_bbp_write(sc, RAL_BBP_RX, rx);
2070}
2071
2072Static int
2073ural_init(struct ifnet *ifp)
2074{
2075 struct ural_softc *sc = ifp->if_softc;
2076 struct ieee80211com *ic = &sc->sc_ic;
2077 struct ieee80211_key *wk;
2078 uint16_t tmp;
2079 usbd_status error;
2080 int i, ntries;
2081
2082 ural_set_testmode(sc);
2083 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2084
2085 ural_stop(ifp, 0);
2086
2087 /* initialize MAC registers to default values */
2088 for (i = 0; i < __arraycount(ural_def_mac); i++)
2089 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2090
2091 /* wait for BBP and RF to wake up (this can take a long time!) */
2092 for (ntries = 0; ntries < 100; ntries++) {
2093 tmp = ural_read(sc, RAL_MAC_CSR17);
2094 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2095 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2096 break;
2097 DELAY(1000);
2098 }
2099 if (ntries == 100) {
2100 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2101 device_xname(sc->sc_dev));
2102 error = EIO;
2103 goto fail;
2104 }
2105
2106 /* we're ready! */
2107 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2108
2109 /* set basic rate set (will be updated later) */
2110 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2111
2112 error = ural_bbp_init(sc);
2113 if (error != 0)
2114 goto fail;
2115
2116 /* set default BSS channel */
2117 ural_set_chan(sc, ic->ic_curchan);
2118
2119 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2120 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2121
2122 ural_set_txantenna(sc, sc->tx_ant);
2123 ural_set_rxantenna(sc, sc->rx_ant);
2124
2125 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2126 ural_set_macaddr(sc, ic->ic_myaddr);
2127
2128 /*
2129 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2130 */
2131 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2132 wk = &ic->ic_crypto.cs_nw_keys[i];
2133 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2134 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2135 }
2136
2137 /*
2138 * Allocate xfer for AMRR statistics requests.
2139 */
2140 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2141 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2142 if (error) {
2143 printf("%s: could not allocate AMRR xfer\n",
2144 device_xname(sc->sc_dev));
2145 goto fail;
2146 }
2147
2148 /*
2149 * Open Tx and Rx USB bulk pipes.
2150 */
2151 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2152 &sc->sc_tx_pipeh);
2153 if (error != 0) {
2154 printf("%s: could not open Tx pipe: %s\n",
2155 device_xname(sc->sc_dev), usbd_errstr(error));
2156 goto fail;
2157 }
2158
2159 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2160 &sc->sc_rx_pipeh);
2161 if (error != 0) {
2162 printf("%s: could not open Rx pipe: %s\n",
2163 device_xname(sc->sc_dev), usbd_errstr(error));
2164 goto fail;
2165 }
2166
2167 /*
2168 * Allocate Tx and Rx xfer queues.
2169 */
2170 error = ural_alloc_tx_list(sc);
2171 if (error != 0) {
2172 printf("%s: could not allocate Tx list\n",
2173 device_xname(sc->sc_dev));
2174 goto fail;
2175 }
2176
2177 error = ural_alloc_rx_list(sc);
2178 if (error != 0) {
2179 printf("%s: could not allocate Rx list\n",
2180 device_xname(sc->sc_dev));
2181 goto fail;
2182 }
2183
2184 /*
2185 * Start up the receive pipe.
2186 */
2187 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2188 struct ural_rx_data *data = &sc->rx_data[i];
2189
2190 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2191 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2192 usbd_transfer(data->xfer);
2193 }
2194
2195 /* kick Rx */
2196 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2197 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2198 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2199 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2200 tmp |= RAL_DROP_TODS;
2201 if (!(ifp->if_flags & IFF_PROMISC))
2202 tmp |= RAL_DROP_NOT_TO_ME;
2203 }
2204 ural_write(sc, RAL_TXRX_CSR2, tmp);
2205
2206 ifp->if_flags &= ~IFF_OACTIVE;
2207 ifp->if_flags |= IFF_RUNNING;
2208
2209 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2210 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2211 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2212 } else
2213 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2214
2215 return 0;
2216
2217fail: ural_stop(ifp, 1);
2218 return error;
2219}
2220
2221Static void
2222ural_stop(struct ifnet *ifp, int disable)
2223{
2224 struct ural_softc *sc = ifp->if_softc;
2225 struct ieee80211com *ic = &sc->sc_ic;
2226
2227 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2228
2229 sc->sc_tx_timer = 0;
2230 ifp->if_timer = 0;
2231 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2232
2233 /* disable Rx */
2234 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2235
2236 /* reset ASIC and BBP (but won't reset MAC registers!) */
2237 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2238 ural_write(sc, RAL_MAC_CSR1, 0);
2239
2240 if (sc->amrr_xfer != NULL) {
2241 usbd_destroy_xfer(sc->amrr_xfer);
2242 sc->amrr_xfer = NULL;
2243 }
2244
2245 if (sc->sc_rx_pipeh != NULL) {
2246 usbd_abort_pipe(sc->sc_rx_pipeh);
2247 }
2248
2249 if (sc->sc_tx_pipeh != NULL) {
2250 usbd_abort_pipe(sc->sc_tx_pipeh);
2251 }
2252
2253 ural_free_rx_list(sc);
2254 ural_free_tx_list(sc);
2255
2256 if (sc->sc_rx_pipeh != NULL) {
2257 usbd_close_pipe(sc->sc_rx_pipeh);
2258 sc->sc_rx_pipeh = NULL;
2259 }
2260
2261 if (sc->sc_tx_pipeh != NULL) {
2262 usbd_close_pipe(sc->sc_tx_pipeh);
2263 sc->sc_tx_pipeh = NULL;
2264 }
2265}
2266
2267int
2268ural_activate(device_t self, enum devact act)
2269{
2270 struct ural_softc *sc = device_private(self);
2271
2272 switch (act) {
2273 case DVACT_DEACTIVATE:
2274 if_deactivate(&sc->sc_if);
2275 return 0;
2276 default:
2277 return EOPNOTSUPP;
2278 }
2279}
2280
2281Static void
2282ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2283{
2284 int i;
2285
2286 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2287 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2288
2289 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2290
2291 /* set rate to some reasonable initial value */
2292 for (i = ni->ni_rates.rs_nrates - 1;
2293 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2294 i--);
2295 ni->ni_txrate = i;
2296
2297 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2298}
2299
2300Static void
2301ural_amrr_timeout(void *arg)
2302{
2303 struct ural_softc *sc = (struct ural_softc *)arg;
2304 usb_device_request_t req;
2305 int s;
2306
2307 s = splusb();
2308
2309 /*
2310 * Asynchronously read statistic registers (cleared by read).
2311 */
2312 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2313 req.bRequest = RAL_READ_MULTI_MAC;
2314 USETW(req.wValue, 0);
2315 USETW(req.wIndex, RAL_STA_CSR0);
2316 USETW(req.wLength, sizeof(sc->sta));
2317
2318 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2319 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2320 ural_amrr_update);
2321 (void)usbd_transfer(sc->amrr_xfer);
2322
2323 splx(s);
2324}
2325
2326Static void
2327ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2328 usbd_status status)
2329{
2330 struct ural_softc *sc = (struct ural_softc *)priv;
2331 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2332
2333 if (status != USBD_NORMAL_COMPLETION) {
2334 printf("%s: could not retrieve Tx statistics - "
2335 "cancelling automatic rate control\n",
2336 device_xname(sc->sc_dev));
2337 return;
2338 }
2339
2340 /* count TX retry-fail as Tx errors */
2341 ifp->if_oerrors += sc->sta[9];
2342
2343 sc->amn.amn_retrycnt =
2344 sc->sta[7] + /* TX one-retry ok count */
2345 sc->sta[8] + /* TX more-retry ok count */
2346 sc->sta[9]; /* TX retry-fail count */
2347
2348 sc->amn.amn_txcnt =
2349 sc->amn.amn_retrycnt +
2350 sc->sta[6]; /* TX no-retry ok count */
2351
2352 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2353
2354 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2355}
2356