1/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2/* $NetBSD: if_zyd.c,v 1.42 2016/07/07 06:55:42 msaitoh Exp $ */
3
4/*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24
25#include <sys/cdefs.h>
26__KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.42 2016/07/07 06:55:42 msaitoh Exp $");
27
28#include <sys/param.h>
29#include <sys/sockio.h>
30#include <sys/proc.h>
31#include <sys/mbuf.h>
32#include <sys/kernel.h>
33#include <sys/kmem.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/conf.h>
38#include <sys/device.h>
39
40#include <sys/bus.h>
41#include <machine/endian.h>
42
43#include <net/bpf.h>
44#include <net/if.h>
45#include <net/if_arp.h>
46#include <net/if_dl.h>
47#include <net/if_ether.h>
48#include <net/if_media.h>
49#include <net/if_types.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/in_var.h>
54#include <netinet/ip.h>
55
56#include <net80211/ieee80211_netbsd.h>
57#include <net80211/ieee80211_var.h>
58#include <net80211/ieee80211_amrr.h>
59#include <net80211/ieee80211_radiotap.h>
60
61#include <dev/firmload.h>
62
63#include <dev/usb/usb.h>
64#include <dev/usb/usbdi.h>
65#include <dev/usb/usbdi_util.h>
66#include <dev/usb/usbdevs.h>
67
68#include <dev/usb/if_zydreg.h>
69
70#ifdef ZYD_DEBUG
71#define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
72#define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
73int zyddebug = 0;
74#else
75#define DPRINTF(x)
76#define DPRINTFN(n, x)
77#endif
78
79static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
80static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
81
82/* various supported device vendors/products */
83#define ZYD_ZD1211_DEV(v, p) \
84 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
85#define ZYD_ZD1211B_DEV(v, p) \
86 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
87static const struct zyd_type {
88 struct usb_devno dev;
89 uint8_t rev;
90#define ZYD_ZD1211 0
91#define ZYD_ZD1211B 1
92} zyd_devs[] = {
93 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
94 ZYD_ZD1211_DEV(ABOCOM, WL54),
95 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
96 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
97 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
98 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
99 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
100 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
101 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
102 ZYD_ZD1211_DEV(SAGEM, XG760A),
103 ZYD_ZD1211_DEV(SENAO, NUB8301),
104 ZYD_ZD1211_DEV(SITECOMEU, WL113),
105 ZYD_ZD1211_DEV(SWEEX, ZD1211),
106 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
107 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
108 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
109 ZYD_ZD1211_DEV(TWINMOS, G240),
110 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
111 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
112 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
113 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
114 ZYD_ZD1211_DEV(ZCOM, ZD1211),
115 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
116 ZYD_ZD1211_DEV(ZYXEL, AG225H),
117 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
118 ZYD_ZD1211_DEV(ZYXEL, G200V2),
119
120 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
121 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
122 ZYD_ZD1211B_DEV(ACCTON, WUS201),
123 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
124 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
125 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
126 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
127 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
128 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
129 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
131 ZYD_ZD1211B_DEV(MELCO, KG54L),
132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
133 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
134 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
135 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
136 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
137 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
138 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
139 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
140 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
141 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
142 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
143 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
144 ZYD_ZD1211B_DEV(USR, USR5423),
145 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
146 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
147 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
148 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
149 ZYD_ZD1211B_DEV(ZYXEL, M202),
150 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
151};
152#define zyd_lookup(v, p) \
153 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
154
155int zyd_match(device_t, cfdata_t, void *);
156void zyd_attach(device_t, device_t, void *);
157int zyd_detach(device_t, int);
158int zyd_activate(device_t, enum devact);
159extern struct cfdriver zyd_cd;
160
161CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
162 zyd_attach, zyd_detach, zyd_activate);
163
164Static void zyd_attachhook(device_t);
165Static int zyd_complete_attach(struct zyd_softc *);
166Static int zyd_open_pipes(struct zyd_softc *);
167Static void zyd_close_pipes(struct zyd_softc *);
168Static int zyd_alloc_tx_list(struct zyd_softc *);
169Static void zyd_free_tx_list(struct zyd_softc *);
170Static int zyd_alloc_rx_list(struct zyd_softc *);
171Static void zyd_free_rx_list(struct zyd_softc *);
172Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
173Static int zyd_media_change(struct ifnet *);
174Static void zyd_next_scan(void *);
175Static void zyd_task(void *);
176Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
177Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
178 void *, int, u_int);
179Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
180Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
181Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
182Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
183Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
184Static void zyd_lock_phy(struct zyd_softc *);
185Static void zyd_unlock_phy(struct zyd_softc *);
186Static int zyd_rfmd_init(struct zyd_rf *);
187Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
188Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
189Static int zyd_al2230_init(struct zyd_rf *);
190Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
191Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
192Static int zyd_al2230_init_b(struct zyd_rf *);
193Static int zyd_al7230B_init(struct zyd_rf *);
194Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
195Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
196Static int zyd_al2210_init(struct zyd_rf *);
197Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
198Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
199Static int zyd_gct_init(struct zyd_rf *);
200Static int zyd_gct_switch_radio(struct zyd_rf *, int);
201Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
202Static int zyd_maxim_init(struct zyd_rf *);
203Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
204Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
205Static int zyd_maxim2_init(struct zyd_rf *);
206Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
207Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
208Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
209Static const char *zyd_rf_name(uint8_t);
210Static int zyd_hw_init(struct zyd_softc *);
211Static int zyd_read_eeprom(struct zyd_softc *);
212Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
213Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
214Static int zyd_switch_radio(struct zyd_softc *, int);
215Static void zyd_set_led(struct zyd_softc *, int, int);
216Static int zyd_set_rxfilter(struct zyd_softc *);
217Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
218Static int zyd_set_beacon_interval(struct zyd_softc *, int);
219Static uint8_t zyd_plcp_signal(int);
220Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
221Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
222Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
223Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
224Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
225 struct ieee80211_node *);
226Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
227 struct ieee80211_node *);
228Static void zyd_start(struct ifnet *);
229Static void zyd_watchdog(struct ifnet *);
230Static int zyd_ioctl(struct ifnet *, u_long, void *);
231Static int zyd_init(struct ifnet *);
232Static void zyd_stop(struct ifnet *, int);
233Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
234Static void zyd_iter_func(void *, struct ieee80211_node *);
235Static void zyd_amrr_timeout(void *);
236Static void zyd_newassoc(struct ieee80211_node *, int);
237
238static const struct ieee80211_rateset zyd_rateset_11b =
239 { 4, { 2, 4, 11, 22 } };
240
241static const struct ieee80211_rateset zyd_rateset_11g =
242 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
243
244int
245zyd_match(device_t parent, cfdata_t match, void *aux)
246{
247 struct usb_attach_arg *uaa = aux;
248
249 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
250 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
251}
252
253Static void
254zyd_attachhook(device_t self)
255{
256 struct zyd_softc *sc = device_private(self);
257 firmware_handle_t fwh;
258 const char *fwname;
259 u_char *fw;
260 size_t size;
261 int error;
262
263 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
264 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
265 aprint_error_dev(sc->sc_dev,
266 "failed to open firmware %s (error=%d)\n", fwname, error);
267 return;
268 }
269 size = firmware_get_size(fwh);
270 fw = firmware_malloc(size);
271 if (fw == NULL) {
272 aprint_error_dev(sc->sc_dev,
273 "failed to allocate firmware memory\n");
274 firmware_close(fwh);
275 return;
276 }
277 error = firmware_read(fwh, 0, fw, size);
278 firmware_close(fwh);
279 if (error != 0) {
280 aprint_error_dev(sc->sc_dev,
281 "failed to read firmware (error %d)\n", error);
282 firmware_free(fw, size);
283 return;
284 }
285
286 error = zyd_loadfirmware(sc, fw, size);
287 if (error != 0) {
288 aprint_error_dev(sc->sc_dev,
289 "could not load firmware (error=%d)\n", error);
290 firmware_free(fw, size);
291 return;
292 }
293
294 firmware_free(fw, size);
295 sc->sc_flags |= ZD1211_FWLOADED;
296
297 /* complete the attach process */
298 if ((error = zyd_complete_attach(sc)) == 0)
299 sc->attached = 1;
300 return;
301}
302
303void
304zyd_attach(device_t parent, device_t self, void *aux)
305{
306 struct zyd_softc *sc = device_private(self);
307 struct usb_attach_arg *uaa = aux;
308 char *devinfop;
309 usb_device_descriptor_t* ddesc;
310 struct ifnet *ifp = &sc->sc_if;
311
312 sc->sc_dev = self;
313 sc->sc_udev = uaa->uaa_device;
314 sc->sc_flags = 0;
315
316 aprint_naive("\n");
317 aprint_normal("\n");
318
319 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
320 aprint_normal_dev(self, "%s\n", devinfop);
321 usbd_devinfo_free(devinfop);
322
323 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
324
325 ddesc = usbd_get_device_descriptor(sc->sc_udev);
326 if (UGETW(ddesc->bcdDevice) < 0x4330) {
327 aprint_error_dev(self, "device version mismatch: 0x%x "
328 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
329 return;
330 }
331
332 ifp->if_softc = sc;
333 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
334 ifp->if_init = zyd_init;
335 ifp->if_ioctl = zyd_ioctl;
336 ifp->if_start = zyd_start;
337 ifp->if_watchdog = zyd_watchdog;
338 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
339 IFQ_SET_READY(&ifp->if_snd);
340 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
341
342 SIMPLEQ_INIT(&sc->sc_rqh);
343
344 /* defer configrations after file system is ready to load firmware */
345 config_mountroot(self, zyd_attachhook);
346}
347
348Static int
349zyd_complete_attach(struct zyd_softc *sc)
350{
351 struct ieee80211com *ic = &sc->sc_ic;
352 struct ifnet *ifp = &sc->sc_if;
353 usbd_status error;
354 int i;
355
356 usb_init_task(&sc->sc_task, zyd_task, sc, 0);
357 callout_init(&(sc->sc_scan_ch), 0);
358
359 sc->amrr.amrr_min_success_threshold = 1;
360 sc->amrr.amrr_max_success_threshold = 10;
361 callout_init(&sc->sc_amrr_ch, 0);
362
363 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
364 if (error != 0) {
365 aprint_error_dev(sc->sc_dev, "failed to set configuration"
366 ", err=%s\n", usbd_errstr(error));
367 goto fail;
368 }
369
370 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
371 &sc->sc_iface);
372 if (error != 0) {
373 aprint_error_dev(sc->sc_dev,
374 "getting interface handle failed\n");
375 goto fail;
376 }
377
378 if ((error = zyd_open_pipes(sc)) != 0) {
379 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
380 goto fail;
381 }
382
383 if ((error = zyd_read_eeprom(sc)) != 0) {
384 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
385 goto fail;
386 }
387
388 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
389 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
390 goto fail;
391 }
392
393 if ((error = zyd_hw_init(sc)) != 0) {
394 aprint_error_dev(sc->sc_dev,
395 "hardware initialization failed\n");
396 goto fail;
397 }
398
399 aprint_normal_dev(sc->sc_dev,
400 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
401 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
402 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
403 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
404
405 ic->ic_ifp = ifp;
406 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
407 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
408 ic->ic_state = IEEE80211_S_INIT;
409
410 /* set device capabilities */
411 ic->ic_caps =
412 IEEE80211_C_MONITOR | /* monitor mode supported */
413 IEEE80211_C_TXPMGT | /* tx power management */
414 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
415 IEEE80211_C_WEP; /* s/w WEP */
416
417 /* set supported .11b and .11g rates */
418 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
419 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
420
421 /* set supported .11b and .11g channels (1 through 14) */
422 for (i = 1; i <= 14; i++) {
423 ic->ic_channels[i].ic_freq =
424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
425 ic->ic_channels[i].ic_flags =
426 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
427 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
428 }
429
430 if_attach(ifp);
431 ieee80211_ifattach(ic);
432 ic->ic_node_alloc = zyd_node_alloc;
433 ic->ic_newassoc = zyd_newassoc;
434
435 /* override state transition machine */
436 sc->sc_newstate = ic->ic_newstate;
437 ic->ic_newstate = zyd_newstate;
438 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
439
440 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
441 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
442 &sc->sc_drvbpf);
443
444 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
445 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
446 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
447
448 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
449 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
450 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
451
452 ieee80211_announce(ic);
453
454 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
455
456fail: return error;
457}
458
459int
460zyd_detach(device_t self, int flags)
461{
462 struct zyd_softc *sc = device_private(self);
463 struct ieee80211com *ic = &sc->sc_ic;
464 struct ifnet *ifp = &sc->sc_if;
465 int s;
466
467 if (!sc->attached)
468 return 0;
469
470 s = splusb();
471
472 zyd_stop(ifp, 1);
473 usb_rem_task(sc->sc_udev, &sc->sc_task);
474 callout_stop(&sc->sc_scan_ch);
475 callout_stop(&sc->sc_amrr_ch);
476
477 /* Abort, etc. done by zyd_stop */
478 zyd_close_pipes(sc);
479
480 sc->attached = 0;
481
482 bpf_detach(ifp);
483 ieee80211_ifdetach(ic);
484 if_detach(ifp);
485
486 splx(s);
487
488 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
489
490 return 0;
491}
492
493Static int
494zyd_open_pipes(struct zyd_softc *sc)
495{
496 usb_endpoint_descriptor_t *edesc;
497 usbd_status error;
498
499 /* interrupt in */
500 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
501 if (edesc == NULL)
502 return EINVAL;
503
504 sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
505 if (sc->ibuf_size == 0) /* should not happen */
506 return EINVAL;
507
508 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
509 if (sc->ibuf == NULL)
510 return ENOMEM;
511
512 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
513 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
514 USBD_DEFAULT_INTERVAL);
515 if (error != 0) {
516 printf("%s: open rx intr pipe failed: %s\n",
517 device_xname(sc->sc_dev), usbd_errstr(error));
518 goto fail;
519 }
520
521 /* interrupt out (not necessarily an interrupt pipe) */
522 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
523 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
524 if (error != 0) {
525 printf("%s: open tx intr pipe failed: %s\n",
526 device_xname(sc->sc_dev), usbd_errstr(error));
527 goto fail;
528 }
529
530 /* bulk in */
531 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
532 &sc->zyd_ep[ZYD_ENDPT_BIN]);
533 if (error != 0) {
534 printf("%s: open rx pipe failed: %s\n",
535 device_xname(sc->sc_dev), usbd_errstr(error));
536 goto fail;
537 }
538
539 /* bulk out */
540 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
541 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
542 if (error != 0) {
543 printf("%s: open tx pipe failed: %s\n",
544 device_xname(sc->sc_dev), usbd_errstr(error));
545 goto fail;
546 }
547
548 return 0;
549
550fail: zyd_close_pipes(sc);
551 return error;
552}
553
554Static void
555zyd_close_pipes(struct zyd_softc *sc)
556{
557 int i;
558
559 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
560 if (sc->zyd_ep[i] != NULL) {
561 usbd_close_pipe(sc->zyd_ep[i]);
562 sc->zyd_ep[i] = NULL;
563 }
564 }
565 if (sc->ibuf != NULL) {
566 kmem_free(sc->ibuf, sc->ibuf_size);
567 sc->ibuf = NULL;
568 }
569}
570
571Static int
572zyd_alloc_tx_list(struct zyd_softc *sc)
573{
574 int i, error;
575
576 sc->tx_queued = 0;
577
578 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
579 struct zyd_tx_data *data = &sc->tx_data[i];
580
581 data->sc = sc; /* backpointer for callbacks */
582
583 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
584 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
585 if (error) {
586 printf("%s: could not allocate tx xfer\n",
587 device_xname(sc->sc_dev));
588 goto fail;
589 }
590 data->buf = usbd_get_buffer(data->xfer);
591
592 /* clear Tx descriptor */
593 memset(data->buf, 0, sizeof(struct zyd_tx_desc));
594 }
595 return 0;
596
597fail: zyd_free_tx_list(sc);
598 return error;
599}
600
601Static void
602zyd_free_tx_list(struct zyd_softc *sc)
603{
604 int i;
605
606 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
607 struct zyd_tx_data *data = &sc->tx_data[i];
608
609 if (data->xfer != NULL) {
610 usbd_destroy_xfer(data->xfer);
611 data->xfer = NULL;
612 }
613 if (data->ni != NULL) {
614 ieee80211_free_node(data->ni);
615 data->ni = NULL;
616 }
617 }
618}
619
620Static int
621zyd_alloc_rx_list(struct zyd_softc *sc)
622{
623 int i, error;
624
625 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
626 struct zyd_rx_data *data = &sc->rx_data[i];
627
628 data->sc = sc; /* backpointer for callbacks */
629
630 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
631 ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 0, &data->xfer);
632 if (error) {
633 printf("%s: could not allocate rx xfer\n",
634 device_xname(sc->sc_dev));
635 goto fail;
636 }
637 data->buf = usbd_get_buffer(data->xfer);
638 }
639 return 0;
640
641fail: zyd_free_rx_list(sc);
642 return error;
643}
644
645Static void
646zyd_free_rx_list(struct zyd_softc *sc)
647{
648 int i;
649
650 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
651 struct zyd_rx_data *data = &sc->rx_data[i];
652
653 if (data->xfer != NULL) {
654 usbd_destroy_xfer(data->xfer);
655 data->xfer = NULL;
656 }
657 }
658}
659
660/* ARGUSED */
661Static struct ieee80211_node *
662zyd_node_alloc(struct ieee80211_node_table *nt __unused)
663{
664 struct zyd_node *zn;
665
666 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
667
668 return &zn->ni;
669}
670
671Static int
672zyd_media_change(struct ifnet *ifp)
673{
674 int error;
675
676 error = ieee80211_media_change(ifp);
677 if (error != ENETRESET)
678 return error;
679
680 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
681 zyd_init(ifp);
682
683 return 0;
684}
685
686/*
687 * This function is called periodically (every 200ms) during scanning to
688 * switch from one channel to another.
689 */
690Static void
691zyd_next_scan(void *arg)
692{
693 struct zyd_softc *sc = arg;
694 struct ieee80211com *ic = &sc->sc_ic;
695
696 if (ic->ic_state == IEEE80211_S_SCAN)
697 ieee80211_next_scan(ic);
698}
699
700Static void
701zyd_task(void *arg)
702{
703 struct zyd_softc *sc = arg;
704 struct ieee80211com *ic = &sc->sc_ic;
705 enum ieee80211_state ostate;
706
707 ostate = ic->ic_state;
708
709 switch (sc->sc_state) {
710 case IEEE80211_S_INIT:
711 if (ostate == IEEE80211_S_RUN) {
712 /* turn link LED off */
713 zyd_set_led(sc, ZYD_LED1, 0);
714
715 /* stop data LED from blinking */
716 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
717 }
718 break;
719
720 case IEEE80211_S_SCAN:
721 zyd_set_chan(sc, ic->ic_curchan);
722 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
723 break;
724
725 case IEEE80211_S_AUTH:
726 case IEEE80211_S_ASSOC:
727 zyd_set_chan(sc, ic->ic_curchan);
728 break;
729
730 case IEEE80211_S_RUN:
731 {
732 struct ieee80211_node *ni = ic->ic_bss;
733
734 zyd_set_chan(sc, ic->ic_curchan);
735
736 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
737 /* turn link LED on */
738 zyd_set_led(sc, ZYD_LED1, 1);
739
740 /* make data LED blink upon Tx */
741 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
742
743 zyd_set_bssid(sc, ni->ni_bssid);
744 }
745
746 if (ic->ic_opmode == IEEE80211_M_STA) {
747 /* fake a join to init the tx rate */
748 zyd_newassoc(ni, 1);
749 }
750
751 /* start automatic rate control timer */
752 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
753 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
754
755 break;
756 }
757 }
758
759 sc->sc_newstate(ic, sc->sc_state, -1);
760}
761
762Static int
763zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
764{
765 struct zyd_softc *sc = ic->ic_ifp->if_softc;
766
767 if (!sc->attached)
768 return ENXIO;
769
770 usb_rem_task(sc->sc_udev, &sc->sc_task);
771 callout_stop(&sc->sc_scan_ch);
772 callout_stop(&sc->sc_amrr_ch);
773
774 /* do it in a process context */
775 sc->sc_state = nstate;
776 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
777
778 return 0;
779}
780
781Static int
782zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
783 void *odata, int olen, u_int flags)
784{
785 struct usbd_xfer *xfer;
786 struct zyd_cmd cmd;
787 struct rq rq;
788 uint16_t xferflags;
789 int error;
790 usbd_status uerror;
791 int s = 0;
792
793 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
794 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
795 if (error)
796 return error;
797
798 cmd.code = htole16(code);
799 memcpy(cmd.data, idata, ilen);
800
801 xferflags = USBD_FORCE_SHORT_XFER;
802 if (!(flags & ZYD_CMD_FLAG_READ))
803 xferflags |= USBD_SYNCHRONOUS;
804 else {
805 s = splusb();
806 rq.idata = idata;
807 rq.odata = odata;
808 rq.len = olen / sizeof(struct zyd_pair);
809 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
810 }
811
812 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
813 ZYD_INTR_TIMEOUT, NULL);
814 uerror = usbd_transfer(xfer);
815 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
816 if (flags & ZYD_CMD_FLAG_READ)
817 splx(s);
818 printf("%s: could not send command (error=%s)\n",
819 device_xname(sc->sc_dev), usbd_errstr(uerror));
820 (void)usbd_destroy_xfer(xfer);
821 return EIO;
822 }
823 if (!(flags & ZYD_CMD_FLAG_READ)) {
824 (void)usbd_destroy_xfer(xfer);
825 return 0; /* write: don't wait for reply */
826 }
827 /* wait at most one second for command reply */
828 error = tsleep(odata, PCATCH, "zydcmd", hz);
829 if (error == EWOULDBLOCK)
830 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
831 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
832 splx(s);
833
834 (void)usbd_destroy_xfer(xfer);
835 return error;
836}
837
838Static int
839zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
840{
841 struct zyd_pair tmp;
842 int error;
843
844 reg = htole16(reg);
845 error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
846 ZYD_CMD_FLAG_READ);
847 if (error == 0)
848 *val = le16toh(tmp.val);
849 else
850 *val = 0;
851 return error;
852}
853
854Static int
855zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
856{
857 struct zyd_pair tmp[2];
858 uint16_t regs[2];
859 int error;
860
861 regs[0] = htole16(ZYD_REG32_HI(reg));
862 regs[1] = htole16(ZYD_REG32_LO(reg));
863 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
864 ZYD_CMD_FLAG_READ);
865 if (error == 0)
866 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
867 else
868 *val = 0;
869 return error;
870}
871
872Static int
873zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
874{
875 struct zyd_pair pair;
876
877 pair.reg = htole16(reg);
878 pair.val = htole16(val);
879
880 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
881}
882
883Static int
884zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
885{
886 struct zyd_pair pair[2];
887
888 pair[0].reg = htole16(ZYD_REG32_HI(reg));
889 pair[0].val = htole16(val >> 16);
890 pair[1].reg = htole16(ZYD_REG32_LO(reg));
891 pair[1].val = htole16(val & 0xffff);
892
893 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
894}
895
896Static int
897zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
898{
899 struct zyd_rf *rf = &sc->sc_rf;
900 struct zyd_rfwrite req;
901 uint16_t cr203;
902 int i;
903
904 (void)zyd_read16(sc, ZYD_CR203, &cr203);
905 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
906
907 req.code = htole16(2);
908 req.width = htole16(rf->width);
909 for (i = 0; i < rf->width; i++) {
910 req.bit[i] = htole16(cr203);
911 if (val & (1 << (rf->width - 1 - i)))
912 req.bit[i] |= htole16(ZYD_RF_DATA);
913 }
914 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
915}
916
917Static void
918zyd_lock_phy(struct zyd_softc *sc)
919{
920 uint32_t tmp;
921
922 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
923 tmp &= ~ZYD_UNLOCK_PHY_REGS;
924 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
925}
926
927Static void
928zyd_unlock_phy(struct zyd_softc *sc)
929{
930 uint32_t tmp;
931
932 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
933 tmp |= ZYD_UNLOCK_PHY_REGS;
934 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
935}
936
937/*
938 * RFMD RF methods.
939 */
940Static int
941zyd_rfmd_init(struct zyd_rf *rf)
942{
943 struct zyd_softc *sc = rf->rf_sc;
944 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
945 static const uint32_t rfini[] = ZYD_RFMD_RF;
946 int error;
947 size_t i;
948
949 /* init RF-dependent PHY registers */
950 for (i = 0; i < __arraycount(phyini); i++) {
951 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
952 if (error != 0)
953 return error;
954 }
955
956 /* init RFMD radio */
957 for (i = 0; i < __arraycount(rfini); i++) {
958 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
959 return error;
960 }
961 return 0;
962}
963
964Static int
965zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
966{
967 struct zyd_softc *sc = rf->rf_sc;
968
969 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
970 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
971
972 return 0;
973}
974
975Static int
976zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
977{
978 struct zyd_softc *sc = rf->rf_sc;
979 static const struct {
980 uint32_t r1, r2;
981 } rfprog[] = ZYD_RFMD_CHANTABLE;
982
983 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
984 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
985
986 return 0;
987}
988
989/*
990 * AL2230 RF methods.
991 */
992Static int
993zyd_al2230_init(struct zyd_rf *rf)
994{
995 struct zyd_softc *sc = rf->rf_sc;
996 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
997 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
998 static const uint32_t rfini[] = ZYD_AL2230_RF;
999 int error;
1000 size_t i;
1001
1002 /* init RF-dependent PHY registers */
1003 for (i = 0; i < __arraycount(phyini); i++) {
1004 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1005 if (error != 0)
1006 return error;
1007 }
1008
1009 if (sc->rf_rev == ZYD_RF_AL2230S) {
1010 for (i = 0; i < __arraycount(phy2230s); i++) {
1011 error = zyd_write16(sc, phy2230s[i].reg,
1012 phy2230s[i].val);
1013 if (error != 0)
1014 return error;
1015 }
1016 }
1017
1018 /* init AL2230 radio */
1019 for (i = 0; i < __arraycount(rfini); i++) {
1020 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1021 return error;
1022 }
1023 return 0;
1024}
1025
1026Static int
1027zyd_al2230_init_b(struct zyd_rf *rf)
1028{
1029 struct zyd_softc *sc = rf->rf_sc;
1030 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1031 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1032 int error;
1033 size_t i;
1034
1035 /* init RF-dependent PHY registers */
1036 for (i = 0; i < __arraycount(phyini); i++) {
1037 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1038 if (error != 0)
1039 return error;
1040 }
1041
1042 /* init AL2230 radio */
1043 for (i = 0; i < __arraycount(rfini); i++) {
1044 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1045 return error;
1046 }
1047 return 0;
1048}
1049
1050Static int
1051zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1052{
1053 struct zyd_softc *sc = rf->rf_sc;
1054 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1055
1056 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1057 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1058
1059 return 0;
1060}
1061
1062Static int
1063zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1064{
1065 struct zyd_softc *sc = rf->rf_sc;
1066 static const struct {
1067 uint32_t r1, r2, r3;
1068 } rfprog[] = ZYD_AL2230_CHANTABLE;
1069
1070 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1071 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1073
1074 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1075 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1076
1077 return 0;
1078}
1079
1080/*
1081 * AL7230B RF methods.
1082 */
1083Static int
1084zyd_al7230B_init(struct zyd_rf *rf)
1085{
1086 struct zyd_softc *sc = rf->rf_sc;
1087 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1088 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1089 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1090 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1091 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1092 int error;
1093 size_t i;
1094
1095 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1096
1097 /* init RF-dependent PHY registers, part one */
1098 for (i = 0; i < __arraycount(phyini_1); i++) {
1099 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1100 if (error != 0)
1101 return error;
1102 }
1103 /* init AL7230B radio, part one */
1104 for (i = 0; i < __arraycount(rfini_1); i++) {
1105 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1106 return error;
1107 }
1108 /* init RF-dependent PHY registers, part two */
1109 for (i = 0; i < __arraycount(phyini_2); i++) {
1110 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1111 if (error != 0)
1112 return error;
1113 }
1114 /* init AL7230B radio, part two */
1115 for (i = 0; i < __arraycount(rfini_2); i++) {
1116 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1117 return error;
1118 }
1119 /* init RF-dependent PHY registers, part three */
1120 for (i = 0; i < __arraycount(phyini_3); i++) {
1121 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1122 if (error != 0)
1123 return error;
1124 }
1125
1126 return 0;
1127}
1128
1129Static int
1130zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1131{
1132 struct zyd_softc *sc = rf->rf_sc;
1133
1134 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1135 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1136
1137 return 0;
1138}
1139
1140Static int
1141zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1142{
1143 struct zyd_softc *sc = rf->rf_sc;
1144 static const struct {
1145 uint32_t r1, r2;
1146 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1147 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1148 int error;
1149 size_t i;
1150
1151 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1152 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1153
1154 for (i = 0; i < __arraycount(rfsc); i++) {
1155 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1156 return error;
1157 }
1158
1159 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1160 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1161 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1162 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1163 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1164
1165 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1166 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1167 (void)zyd_rfwrite(sc, 0x3c9000);
1168
1169 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1170 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1171 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1172
1173 return 0;
1174}
1175
1176/*
1177 * AL2210 RF methods.
1178 */
1179Static int
1180zyd_al2210_init(struct zyd_rf *rf)
1181{
1182 struct zyd_softc *sc = rf->rf_sc;
1183 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1184 static const uint32_t rfini[] = ZYD_AL2210_RF;
1185 uint32_t tmp;
1186 int error;
1187 size_t i;
1188
1189 (void)zyd_write32(sc, ZYD_CR18, 2);
1190
1191 /* init RF-dependent PHY registers */
1192 for (i = 0; i < __arraycount(phyini); i++) {
1193 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1194 if (error != 0)
1195 return error;
1196 }
1197 /* init AL2210 radio */
1198 for (i = 0; i < __arraycount(rfini); i++) {
1199 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1200 return error;
1201 }
1202 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1203 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1204 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1205 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1206 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1207 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1208 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1209 (void)zyd_write32(sc, ZYD_CR18, 3);
1210
1211 return 0;
1212}
1213
1214Static int
1215zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1216{
1217 /* vendor driver does nothing for this RF chip */
1218
1219 return 0;
1220}
1221
1222Static int
1223zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1224{
1225 struct zyd_softc *sc = rf->rf_sc;
1226 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1227 uint32_t tmp;
1228
1229 (void)zyd_write32(sc, ZYD_CR18, 2);
1230 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1231 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1232 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1233 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1234 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1235
1236 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1237 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1238
1239 /* actually set the channel */
1240 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1241
1242 (void)zyd_write32(sc, ZYD_CR18, 3);
1243
1244 return 0;
1245}
1246
1247/*
1248 * GCT RF methods.
1249 */
1250Static int
1251zyd_gct_init(struct zyd_rf *rf)
1252{
1253 struct zyd_softc *sc = rf->rf_sc;
1254 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1255 static const uint32_t rfini[] = ZYD_GCT_RF;
1256 int error;
1257 size_t i;
1258
1259 /* init RF-dependent PHY registers */
1260 for (i = 0; i < __arraycount(phyini); i++) {
1261 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1262 if (error != 0)
1263 return error;
1264 }
1265 /* init cgt radio */
1266 for (i = 0; i < __arraycount(rfini); i++) {
1267 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1268 return error;
1269 }
1270 return 0;
1271}
1272
1273Static int
1274zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1275{
1276 /* vendor driver does nothing for this RF chip */
1277
1278 return 0;
1279}
1280
1281Static int
1282zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1283{
1284 struct zyd_softc *sc = rf->rf_sc;
1285 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1286
1287 (void)zyd_rfwrite(sc, 0x1c0000);
1288 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1289 (void)zyd_rfwrite(sc, 0x1c0008);
1290
1291 return 0;
1292}
1293
1294/*
1295 * Maxim RF methods.
1296 */
1297Static int
1298zyd_maxim_init(struct zyd_rf *rf)
1299{
1300 struct zyd_softc *sc = rf->rf_sc;
1301 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1302 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1303 uint16_t tmp;
1304 int error;
1305 size_t i;
1306
1307 /* init RF-dependent PHY registers */
1308 for (i = 0; i < __arraycount(phyini); i++) {
1309 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1310 if (error != 0)
1311 return error;
1312 }
1313 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1314 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1315
1316 /* init maxim radio */
1317 for (i = 0; i < __arraycount(rfini); i++) {
1318 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1319 return error;
1320 }
1321 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1322 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1323
1324 return 0;
1325}
1326
1327Static int
1328zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1329{
1330 /* vendor driver does nothing for this RF chip */
1331
1332 return 0;
1333}
1334
1335Static int
1336zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1337{
1338 struct zyd_softc *sc = rf->rf_sc;
1339 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1340 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1341 static const struct {
1342 uint32_t r1, r2;
1343 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1344 uint16_t tmp;
1345 int error;
1346 size_t i;
1347
1348 /*
1349 * Do the same as we do when initializing it, except for the channel
1350 * values coming from the two channel tables.
1351 */
1352
1353 /* init RF-dependent PHY registers */
1354 for (i = 0; i < __arraycount(phyini); i++) {
1355 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1356 if (error != 0)
1357 return error;
1358 }
1359 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1360 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1361
1362 /* first two values taken from the chantables */
1363 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1364 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1365
1366 /* init maxim radio - skipping the two first values */
1367 for (i = 2; i < __arraycount(rfini); i++) {
1368 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1369 return error;
1370 }
1371 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1372 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1373
1374 return 0;
1375}
1376
1377/*
1378 * Maxim2 RF methods.
1379 */
1380Static int
1381zyd_maxim2_init(struct zyd_rf *rf)
1382{
1383 struct zyd_softc *sc = rf->rf_sc;
1384 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1385 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1386 uint16_t tmp;
1387 int error;
1388 size_t i;
1389
1390 /* init RF-dependent PHY registers */
1391 for (i = 0; i < __arraycount(phyini); i++) {
1392 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1393 if (error != 0)
1394 return error;
1395 }
1396 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1397 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1398
1399 /* init maxim2 radio */
1400 for (i = 0; i < __arraycount(rfini); i++) {
1401 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1402 return error;
1403 }
1404 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1405 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1406
1407 return 0;
1408}
1409
1410Static int
1411zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1412{
1413 /* vendor driver does nothing for this RF chip */
1414
1415 return 0;
1416}
1417
1418Static int
1419zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1420{
1421 struct zyd_softc *sc = rf->rf_sc;
1422 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1423 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1424 static const struct {
1425 uint32_t r1, r2;
1426 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1427 uint16_t tmp;
1428 int error;
1429 size_t i;
1430
1431 /*
1432 * Do the same as we do when initializing it, except for the channel
1433 * values coming from the two channel tables.
1434 */
1435
1436 /* init RF-dependent PHY registers */
1437 for (i = 0; i < __arraycount(phyini); i++) {
1438 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1439 if (error != 0)
1440 return error;
1441 }
1442 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1443 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1444
1445 /* first two values taken from the chantables */
1446 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1447 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1448
1449 /* init maxim2 radio - skipping the two first values */
1450 for (i = 2; i < __arraycount(rfini); i++) {
1451 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1452 return error;
1453 }
1454 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1455 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1456
1457 return 0;
1458}
1459
1460Static int
1461zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1462{
1463 struct zyd_rf *rf = &sc->sc_rf;
1464
1465 rf->rf_sc = sc;
1466
1467 switch (type) {
1468 case ZYD_RF_RFMD:
1469 rf->init = zyd_rfmd_init;
1470 rf->switch_radio = zyd_rfmd_switch_radio;
1471 rf->set_channel = zyd_rfmd_set_channel;
1472 rf->width = 24; /* 24-bit RF values */
1473 break;
1474 case ZYD_RF_AL2230:
1475 case ZYD_RF_AL2230S:
1476 if (sc->mac_rev == ZYD_ZD1211B)
1477 rf->init = zyd_al2230_init_b;
1478 else
1479 rf->init = zyd_al2230_init;
1480 rf->switch_radio = zyd_al2230_switch_radio;
1481 rf->set_channel = zyd_al2230_set_channel;
1482 rf->width = 24; /* 24-bit RF values */
1483 break;
1484 case ZYD_RF_AL7230B:
1485 rf->init = zyd_al7230B_init;
1486 rf->switch_radio = zyd_al7230B_switch_radio;
1487 rf->set_channel = zyd_al7230B_set_channel;
1488 rf->width = 24; /* 24-bit RF values */
1489 break;
1490 case ZYD_RF_AL2210:
1491 rf->init = zyd_al2210_init;
1492 rf->switch_radio = zyd_al2210_switch_radio;
1493 rf->set_channel = zyd_al2210_set_channel;
1494 rf->width = 24; /* 24-bit RF values */
1495 break;
1496 case ZYD_RF_GCT:
1497 rf->init = zyd_gct_init;
1498 rf->switch_radio = zyd_gct_switch_radio;
1499 rf->set_channel = zyd_gct_set_channel;
1500 rf->width = 21; /* 21-bit RF values */
1501 break;
1502 case ZYD_RF_MAXIM_NEW:
1503 rf->init = zyd_maxim_init;
1504 rf->switch_radio = zyd_maxim_switch_radio;
1505 rf->set_channel = zyd_maxim_set_channel;
1506 rf->width = 18; /* 18-bit RF values */
1507 break;
1508 case ZYD_RF_MAXIM_NEW2:
1509 rf->init = zyd_maxim2_init;
1510 rf->switch_radio = zyd_maxim2_switch_radio;
1511 rf->set_channel = zyd_maxim2_set_channel;
1512 rf->width = 18; /* 18-bit RF values */
1513 break;
1514 default:
1515 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1516 device_xname(sc->sc_dev), zyd_rf_name(type));
1517 return EINVAL;
1518 }
1519 return 0;
1520}
1521
1522Static const char *
1523zyd_rf_name(uint8_t type)
1524{
1525 static const char * const zyd_rfs[] = {
1526 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1527 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1528 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1529 "PHILIPS"
1530 };
1531
1532 return zyd_rfs[(type > 15) ? 0 : type];
1533}
1534
1535Static int
1536zyd_hw_init(struct zyd_softc *sc)
1537{
1538 struct zyd_rf *rf = &sc->sc_rf;
1539 const struct zyd_phy_pair *phyp;
1540 int error;
1541
1542 /* specify that the plug and play is finished */
1543 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1544
1545 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1546 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1547
1548 /* retrieve firmware revision number */
1549 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1550
1551 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1552 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1553
1554 /* disable interrupts */
1555 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1556
1557 /* PHY init */
1558 zyd_lock_phy(sc);
1559 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1560 for (; phyp->reg != 0; phyp++) {
1561 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1562 goto fail;
1563 }
1564 zyd_unlock_phy(sc);
1565
1566 /* HMAC init */
1567 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1568 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1569
1570 if (sc->mac_rev == ZYD_ZD1211) {
1571 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1572 } else {
1573 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1574 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1578 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1579 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1580 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1581 }
1582
1583 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1584 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1585 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1586 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1587 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1588 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1589 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1590 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1591 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1592 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1593 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1594 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1595 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1596 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1597 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1598 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1599 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1600
1601 /* RF chip init */
1602 zyd_lock_phy(sc);
1603 error = (*rf->init)(rf);
1604 zyd_unlock_phy(sc);
1605 if (error != 0) {
1606 printf("%s: radio initialization failed\n",
1607 device_xname(sc->sc_dev));
1608 goto fail;
1609 }
1610
1611 /* init beacon interval to 100ms */
1612 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1613 goto fail;
1614
1615fail: return error;
1616}
1617
1618Static int
1619zyd_read_eeprom(struct zyd_softc *sc)
1620{
1621 struct ieee80211com *ic = &sc->sc_ic;
1622 uint32_t tmp;
1623 uint16_t val;
1624 int i;
1625
1626 /* read MAC address */
1627 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1628 ic->ic_myaddr[0] = tmp & 0xff;
1629 ic->ic_myaddr[1] = tmp >> 8;
1630 ic->ic_myaddr[2] = tmp >> 16;
1631 ic->ic_myaddr[3] = tmp >> 24;
1632 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1633 ic->ic_myaddr[4] = tmp & 0xff;
1634 ic->ic_myaddr[5] = tmp >> 8;
1635
1636 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1637 sc->rf_rev = tmp & 0x0f;
1638 sc->pa_rev = (tmp >> 16) & 0x0f;
1639
1640 /* read regulatory domain (currently unused) */
1641 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1642 sc->regdomain = tmp >> 16;
1643 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1644
1645 /* read Tx power calibration tables */
1646 for (i = 0; i < 7; i++) {
1647 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1648 sc->pwr_cal[i * 2] = val >> 8;
1649 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1650
1651 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1652 sc->pwr_int[i * 2] = val >> 8;
1653 sc->pwr_int[i * 2 + 1] = val & 0xff;
1654
1655 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1656 sc->ofdm36_cal[i * 2] = val >> 8;
1657 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1658
1659 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1660 sc->ofdm48_cal[i * 2] = val >> 8;
1661 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1662
1663 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1664 sc->ofdm54_cal[i * 2] = val >> 8;
1665 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1666 }
1667 return 0;
1668}
1669
1670Static int
1671zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1672{
1673 uint32_t tmp;
1674
1675 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1676 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1677
1678 tmp = addr[5] << 8 | addr[4];
1679 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1680
1681 return 0;
1682}
1683
1684Static int
1685zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1686{
1687 uint32_t tmp;
1688
1689 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1690 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1691
1692 tmp = addr[5] << 8 | addr[4];
1693 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1694
1695 return 0;
1696}
1697
1698Static int
1699zyd_switch_radio(struct zyd_softc *sc, int on)
1700{
1701 struct zyd_rf *rf = &sc->sc_rf;
1702 int error;
1703
1704 zyd_lock_phy(sc);
1705 error = (*rf->switch_radio)(rf, on);
1706 zyd_unlock_phy(sc);
1707
1708 return error;
1709}
1710
1711Static void
1712zyd_set_led(struct zyd_softc *sc, int which, int on)
1713{
1714 uint32_t tmp;
1715
1716 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1717 tmp &= ~which;
1718 if (on)
1719 tmp |= which;
1720 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1721}
1722
1723Static int
1724zyd_set_rxfilter(struct zyd_softc *sc)
1725{
1726 uint32_t rxfilter;
1727
1728 switch (sc->sc_ic.ic_opmode) {
1729 case IEEE80211_M_STA:
1730 rxfilter = ZYD_FILTER_BSS;
1731 break;
1732 case IEEE80211_M_IBSS:
1733 case IEEE80211_M_HOSTAP:
1734 rxfilter = ZYD_FILTER_HOSTAP;
1735 break;
1736 case IEEE80211_M_MONITOR:
1737 rxfilter = ZYD_FILTER_MONITOR;
1738 break;
1739 default:
1740 /* should not get there */
1741 return EINVAL;
1742 }
1743 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1744}
1745
1746Static void
1747zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1748{
1749 struct ieee80211com *ic = &sc->sc_ic;
1750 struct zyd_rf *rf = &sc->sc_rf;
1751 u_int chan;
1752
1753 chan = ieee80211_chan2ieee(ic, c);
1754 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1755 return;
1756
1757 zyd_lock_phy(sc);
1758
1759 (*rf->set_channel)(rf, chan);
1760
1761 /* update Tx power */
1762 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1763 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1764
1765 if (sc->mac_rev == ZYD_ZD1211B) {
1766 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1767 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1768 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1769
1770 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1771 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1772 }
1773
1774 zyd_unlock_phy(sc);
1775}
1776
1777Static int
1778zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1779{
1780 /* XXX this is probably broken.. */
1781 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1782 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1783 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1784
1785 return 0;
1786}
1787
1788Static uint8_t
1789zyd_plcp_signal(int rate)
1790{
1791 switch (rate) {
1792 /* CCK rates (returned values are device-dependent) */
1793 case 2: return 0x0;
1794 case 4: return 0x1;
1795 case 11: return 0x2;
1796 case 22: return 0x3;
1797
1798 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1799 case 12: return 0xb;
1800 case 18: return 0xf;
1801 case 24: return 0xa;
1802 case 36: return 0xe;
1803 case 48: return 0x9;
1804 case 72: return 0xd;
1805 case 96: return 0x8;
1806 case 108: return 0xc;
1807
1808 /* unsupported rates (should not get there) */
1809 default: return 0xff;
1810 }
1811}
1812
1813Static void
1814zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1815{
1816 struct zyd_softc *sc = (struct zyd_softc *)priv;
1817 struct zyd_cmd *cmd;
1818 uint32_t datalen;
1819
1820 if (status != USBD_NORMAL_COMPLETION) {
1821 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1822 return;
1823
1824 if (status == USBD_STALLED) {
1825 usbd_clear_endpoint_stall_async(
1826 sc->zyd_ep[ZYD_ENDPT_IIN]);
1827 }
1828 return;
1829 }
1830
1831 cmd = (struct zyd_cmd *)sc->ibuf;
1832
1833 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1834 struct zyd_notif_retry *retry =
1835 (struct zyd_notif_retry *)cmd->data;
1836 struct ieee80211com *ic = &sc->sc_ic;
1837 struct ifnet *ifp = &sc->sc_if;
1838 struct ieee80211_node *ni;
1839
1840 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1841 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1842 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1843
1844 /*
1845 * Find the node to which the packet was sent and update its
1846 * retry statistics. In BSS mode, this node is the AP we're
1847 * associated to so no lookup is actually needed.
1848 */
1849 if (ic->ic_opmode != IEEE80211_M_STA) {
1850 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1851 if (ni == NULL)
1852 return; /* just ignore */
1853 } else
1854 ni = ic->ic_bss;
1855
1856 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1857
1858 if (le16toh(retry->count) & 0x100)
1859 ifp->if_oerrors++; /* too many retries */
1860
1861 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1862 struct rq *rqp;
1863
1864 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1865 return; /* HMAC interrupt */
1866
1867 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1868 datalen -= sizeof(cmd->code);
1869 datalen -= 2; /* XXX: padding? */
1870
1871 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1872 int i;
1873
1874 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1875 continue;
1876 for (i = 0; i < rqp->len; i++) {
1877 if (*(((const uint16_t *)rqp->idata) + i) !=
1878 (((struct zyd_pair *)cmd->data) + i)->reg)
1879 break;
1880 }
1881 if (i != rqp->len)
1882 continue;
1883
1884 /* copy answer into caller-supplied buffer */
1885 memcpy(rqp->odata, cmd->data,
1886 sizeof(struct zyd_pair) * rqp->len);
1887 wakeup(rqp->odata); /* wakeup caller */
1888
1889 return;
1890 }
1891 return; /* unexpected IORD notification */
1892 } else {
1893 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1894 le16toh(cmd->code));
1895 }
1896}
1897
1898Static void
1899zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1900{
1901 struct ieee80211com *ic = &sc->sc_ic;
1902 struct ifnet *ifp = &sc->sc_if;
1903 struct ieee80211_node *ni;
1904 struct ieee80211_frame *wh;
1905 const struct zyd_plcphdr *plcp;
1906 const struct zyd_rx_stat *stat;
1907 struct mbuf *m;
1908 int rlen, s;
1909
1910 if (len < ZYD_MIN_FRAGSZ) {
1911 printf("%s: frame too short (length=%d)\n",
1912 device_xname(sc->sc_dev), len);
1913 ifp->if_ierrors++;
1914 return;
1915 }
1916
1917 plcp = (const struct zyd_plcphdr *)buf;
1918 stat = (const struct zyd_rx_stat *)
1919 (buf + len - sizeof(struct zyd_rx_stat));
1920
1921 if (stat->flags & ZYD_RX_ERROR) {
1922 DPRINTF(("%s: RX status indicated error (%x)\n",
1923 device_xname(sc->sc_dev), stat->flags));
1924 ifp->if_ierrors++;
1925 return;
1926 }
1927
1928 /* compute actual frame length */
1929 rlen = len - sizeof(struct zyd_plcphdr) -
1930 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1931
1932 /* allocate a mbuf to store the frame */
1933 MGETHDR(m, M_DONTWAIT, MT_DATA);
1934 if (m == NULL) {
1935 printf("%s: could not allocate rx mbuf\n",
1936 device_xname(sc->sc_dev));
1937 ifp->if_ierrors++;
1938 return;
1939 }
1940 if (rlen > MHLEN) {
1941 MCLGET(m, M_DONTWAIT);
1942 if (!(m->m_flags & M_EXT)) {
1943 printf("%s: could not allocate rx mbuf cluster\n",
1944 device_xname(sc->sc_dev));
1945 m_freem(m);
1946 ifp->if_ierrors++;
1947 return;
1948 }
1949 }
1950 m_set_rcvif(m, ifp);
1951 m->m_pkthdr.len = m->m_len = rlen;
1952 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1953
1954 s = splnet();
1955
1956 if (sc->sc_drvbpf != NULL) {
1957 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1958 static const uint8_t rates[] = {
1959 /* reverse function of zyd_plcp_signal() */
1960 2, 4, 11, 22, 0, 0, 0, 0,
1961 96, 48, 24, 12, 108, 72, 36, 18
1962 };
1963
1964 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1965 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1966 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1967 tap->wr_rssi = stat->rssi;
1968 tap->wr_rate = rates[plcp->signal & 0xf];
1969
1970 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1971 }
1972
1973 wh = mtod(m, struct ieee80211_frame *);
1974 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1975 ieee80211_input(ic, m, ni, stat->rssi, 0);
1976
1977 /* node is no longer needed */
1978 ieee80211_free_node(ni);
1979
1980 splx(s);
1981}
1982
1983Static void
1984zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1985{
1986 struct zyd_rx_data *data = priv;
1987 struct zyd_softc *sc = data->sc;
1988 struct ifnet *ifp = &sc->sc_if;
1989 const struct zyd_rx_desc *desc;
1990 int len;
1991
1992 if (status != USBD_NORMAL_COMPLETION) {
1993 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1994 return;
1995
1996 if (status == USBD_STALLED)
1997 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1998
1999 goto skip;
2000 }
2001 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2002
2003 if (len < ZYD_MIN_RXBUFSZ) {
2004 printf("%s: xfer too short (length=%d)\n",
2005 device_xname(sc->sc_dev), len);
2006 ifp->if_ierrors++;
2007 goto skip;
2008 }
2009
2010 desc = (const struct zyd_rx_desc *)
2011 (data->buf + len - sizeof(struct zyd_rx_desc));
2012
2013 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2014 const uint8_t *p = data->buf, *end = p + len;
2015 int i;
2016
2017 DPRINTFN(3, ("received multi-frame transfer\n"));
2018
2019 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2020 const uint16_t len16 = UGETW(desc->len[i]);
2021
2022 if (len16 == 0 || p + len16 > end)
2023 break;
2024
2025 zyd_rx_data(sc, p, len16);
2026 /* next frame is aligned on a 32-bit boundary */
2027 p += (len16 + 3) & ~3;
2028 }
2029 } else {
2030 DPRINTFN(3, ("received single-frame transfer\n"));
2031
2032 zyd_rx_data(sc, data->buf, len);
2033 }
2034
2035skip: /* setup a new transfer */
2036
2037 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2038 USBD_NO_TIMEOUT, zyd_rxeof);
2039 (void)usbd_transfer(xfer);
2040}
2041
2042Static int
2043zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2044{
2045 struct ieee80211com *ic = &sc->sc_ic;
2046 struct ifnet *ifp = &sc->sc_if;
2047 struct zyd_tx_desc *desc;
2048 struct zyd_tx_data *data;
2049 struct ieee80211_frame *wh;
2050 struct ieee80211_key *k;
2051 int xferlen, totlen, rate;
2052 uint16_t pktlen;
2053 usbd_status error;
2054
2055 data = &sc->tx_data[0];
2056 desc = (struct zyd_tx_desc *)data->buf;
2057
2058 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2059
2060 wh = mtod(m0, struct ieee80211_frame *);
2061
2062 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2063 k = ieee80211_crypto_encap(ic, ni, m0);
2064 if (k == NULL) {
2065 m_freem(m0);
2066 return ENOBUFS;
2067 }
2068 }
2069
2070 data->ni = ni;
2071
2072 wh = mtod(m0, struct ieee80211_frame *);
2073
2074 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2075 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2076
2077 /* fill Tx descriptor */
2078 desc->len = htole16(totlen);
2079
2080 desc->flags = ZYD_TX_FLAG_BACKOFF;
2081 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2082 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2083 if (totlen > ic->ic_rtsthreshold) {
2084 desc->flags |= ZYD_TX_FLAG_RTS;
2085 } else if (ZYD_RATE_IS_OFDM(rate) &&
2086 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2087 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2088 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2089 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2090 desc->flags |= ZYD_TX_FLAG_RTS;
2091 }
2092 } else
2093 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2094
2095 if ((wh->i_fc[0] &
2096 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2097 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2098 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2099
2100 desc->phy = zyd_plcp_signal(rate);
2101 if (ZYD_RATE_IS_OFDM(rate)) {
2102 desc->phy |= ZYD_TX_PHY_OFDM;
2103 if (ic->ic_curmode == IEEE80211_MODE_11A)
2104 desc->phy |= ZYD_TX_PHY_5GHZ;
2105 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2106 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2107
2108 /* actual transmit length (XXX why +10?) */
2109 pktlen = sizeof(struct zyd_tx_desc) + 10;
2110 if (sc->mac_rev == ZYD_ZD1211)
2111 pktlen += totlen;
2112 desc->pktlen = htole16(pktlen);
2113
2114 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2115 desc->plcp_service = 0;
2116 if (rate == 22) {
2117 const int remainder = (16 * totlen) % 22;
2118 if (remainder != 0 && remainder < 7)
2119 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2120 }
2121
2122 if (sc->sc_drvbpf != NULL) {
2123 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2124
2125 tap->wt_flags = 0;
2126 tap->wt_rate = rate;
2127 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2128 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2129
2130 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2131 }
2132
2133 m_copydata(m0, 0, m0->m_pkthdr.len,
2134 data->buf + sizeof(struct zyd_tx_desc));
2135
2136 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2137 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2138
2139 m_freem(m0); /* mbuf no longer needed */
2140
2141 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2142 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2143 error = usbd_transfer(data->xfer);
2144 if (error != USBD_IN_PROGRESS && error != 0) {
2145 ifp->if_oerrors++;
2146 return EIO;
2147 }
2148 sc->tx_queued++;
2149
2150 return 0;
2151}
2152
2153Static void
2154zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2155{
2156 struct zyd_tx_data *data = priv;
2157 struct zyd_softc *sc = data->sc;
2158 struct ifnet *ifp = &sc->sc_if;
2159 int s;
2160
2161 if (status != USBD_NORMAL_COMPLETION) {
2162 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2163 return;
2164
2165 printf("%s: could not transmit buffer: %s\n",
2166 device_xname(sc->sc_dev), usbd_errstr(status));
2167
2168 if (status == USBD_STALLED) {
2169 usbd_clear_endpoint_stall_async(
2170 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2171 }
2172 ifp->if_oerrors++;
2173 return;
2174 }
2175
2176 s = splnet();
2177
2178 /* update rate control statistics */
2179 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2180
2181 ieee80211_free_node(data->ni);
2182 data->ni = NULL;
2183
2184 sc->tx_queued--;
2185 ifp->if_opackets++;
2186
2187 sc->tx_timer = 0;
2188 ifp->if_flags &= ~IFF_OACTIVE;
2189 zyd_start(ifp);
2190
2191 splx(s);
2192}
2193
2194Static int
2195zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2196{
2197 struct ieee80211com *ic = &sc->sc_ic;
2198 struct ifnet *ifp = &sc->sc_if;
2199 struct zyd_tx_desc *desc;
2200 struct zyd_tx_data *data;
2201 struct ieee80211_frame *wh;
2202 struct ieee80211_key *k;
2203 int xferlen, totlen, rate;
2204 uint16_t pktlen;
2205 usbd_status error;
2206
2207 wh = mtod(m0, struct ieee80211_frame *);
2208
2209 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2210 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2211 else
2212 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2213 rate &= IEEE80211_RATE_VAL;
2214
2215 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2216 k = ieee80211_crypto_encap(ic, ni, m0);
2217 if (k == NULL) {
2218 m_freem(m0);
2219 return ENOBUFS;
2220 }
2221
2222 /* packet header may have moved, reset our local pointer */
2223 wh = mtod(m0, struct ieee80211_frame *);
2224 }
2225
2226 data = &sc->tx_data[0];
2227 desc = (struct zyd_tx_desc *)data->buf;
2228
2229 data->ni = ni;
2230
2231 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2232 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2233
2234 /* fill Tx descriptor */
2235 desc->len = htole16(totlen);
2236
2237 desc->flags = ZYD_TX_FLAG_BACKOFF;
2238 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2239 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2240 if (totlen > ic->ic_rtsthreshold) {
2241 desc->flags |= ZYD_TX_FLAG_RTS;
2242 } else if (ZYD_RATE_IS_OFDM(rate) &&
2243 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2244 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2245 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2246 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2247 desc->flags |= ZYD_TX_FLAG_RTS;
2248 }
2249 } else
2250 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2251
2252 if ((wh->i_fc[0] &
2253 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2254 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2255 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2256
2257 desc->phy = zyd_plcp_signal(rate);
2258 if (ZYD_RATE_IS_OFDM(rate)) {
2259 desc->phy |= ZYD_TX_PHY_OFDM;
2260 if (ic->ic_curmode == IEEE80211_MODE_11A)
2261 desc->phy |= ZYD_TX_PHY_5GHZ;
2262 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2263 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2264
2265 /* actual transmit length (XXX why +10?) */
2266 pktlen = sizeof(struct zyd_tx_desc) + 10;
2267 if (sc->mac_rev == ZYD_ZD1211)
2268 pktlen += totlen;
2269 desc->pktlen = htole16(pktlen);
2270
2271 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2272 desc->plcp_service = 0;
2273 if (rate == 22) {
2274 const int remainder = (16 * totlen) % 22;
2275 if (remainder != 0 && remainder < 7)
2276 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2277 }
2278
2279 if (sc->sc_drvbpf != NULL) {
2280 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2281
2282 tap->wt_flags = 0;
2283 tap->wt_rate = rate;
2284 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2285 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2286
2287 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2288 }
2289
2290 m_copydata(m0, 0, m0->m_pkthdr.len,
2291 data->buf + sizeof(struct zyd_tx_desc));
2292
2293 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2294 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2295
2296 m_freem(m0); /* mbuf no longer needed */
2297
2298 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2299 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2300 error = usbd_transfer(data->xfer);
2301 if (error != USBD_IN_PROGRESS && error != 0) {
2302 ifp->if_oerrors++;
2303 return EIO;
2304 }
2305 sc->tx_queued++;
2306
2307 return 0;
2308}
2309
2310Static void
2311zyd_start(struct ifnet *ifp)
2312{
2313 struct zyd_softc *sc = ifp->if_softc;
2314 struct ieee80211com *ic = &sc->sc_ic;
2315 struct ether_header *eh;
2316 struct ieee80211_node *ni;
2317 struct mbuf *m0;
2318
2319 for (;;) {
2320 IF_POLL(&ic->ic_mgtq, m0);
2321 if (m0 != NULL) {
2322 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2323 ifp->if_flags |= IFF_OACTIVE;
2324 break;
2325 }
2326 IF_DEQUEUE(&ic->ic_mgtq, m0);
2327
2328 ni = M_GETCTX(m0, struct ieee80211_node *);
2329 M_CLEARCTX(m0);
2330 bpf_mtap3(ic->ic_rawbpf, m0);
2331 if (zyd_tx_mgt(sc, m0, ni) != 0)
2332 break;
2333 } else {
2334 if (ic->ic_state != IEEE80211_S_RUN)
2335 break;
2336 IFQ_POLL(&ifp->if_snd, m0);
2337 if (m0 == NULL)
2338 break;
2339 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2340 ifp->if_flags |= IFF_OACTIVE;
2341 break;
2342 }
2343 IFQ_DEQUEUE(&ifp->if_snd, m0);
2344
2345 if (m0->m_len < sizeof(struct ether_header) &&
2346 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2347 continue;
2348
2349 eh = mtod(m0, struct ether_header *);
2350 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2351 if (ni == NULL) {
2352 m_freem(m0);
2353 continue;
2354 }
2355 bpf_mtap(ifp, m0);
2356 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2357 ieee80211_free_node(ni);
2358 ifp->if_oerrors++;
2359 continue;
2360 }
2361 bpf_mtap3(ic->ic_rawbpf, m0);
2362 if (zyd_tx_data(sc, m0, ni) != 0) {
2363 ieee80211_free_node(ni);
2364 ifp->if_oerrors++;
2365 break;
2366 }
2367 }
2368
2369 sc->tx_timer = 5;
2370 ifp->if_timer = 1;
2371 }
2372}
2373
2374Static void
2375zyd_watchdog(struct ifnet *ifp)
2376{
2377 struct zyd_softc *sc = ifp->if_softc;
2378 struct ieee80211com *ic = &sc->sc_ic;
2379
2380 ifp->if_timer = 0;
2381
2382 if (sc->tx_timer > 0) {
2383 if (--sc->tx_timer == 0) {
2384 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2385 /* zyd_init(ifp); XXX needs a process context ? */
2386 ifp->if_oerrors++;
2387 return;
2388 }
2389 ifp->if_timer = 1;
2390 }
2391
2392 ieee80211_watchdog(ic);
2393}
2394
2395Static int
2396zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2397{
2398 struct zyd_softc *sc = ifp->if_softc;
2399 struct ieee80211com *ic = &sc->sc_ic;
2400 int s, error = 0;
2401
2402 s = splnet();
2403
2404 switch (cmd) {
2405 case SIOCSIFFLAGS:
2406 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2407 break;
2408 /* XXX re-use ether_ioctl() */
2409 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2410 case IFF_UP:
2411 zyd_init(ifp);
2412 break;
2413 case IFF_RUNNING:
2414 zyd_stop(ifp, 1);
2415 break;
2416 default:
2417 break;
2418 }
2419 break;
2420
2421 default:
2422 error = ieee80211_ioctl(ic, cmd, data);
2423 }
2424
2425 if (error == ENETRESET) {
2426 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2427 (IFF_RUNNING | IFF_UP))
2428 zyd_init(ifp);
2429 error = 0;
2430 }
2431
2432 splx(s);
2433
2434 return error;
2435}
2436
2437Static int
2438zyd_init(struct ifnet *ifp)
2439{
2440 struct zyd_softc *sc = ifp->if_softc;
2441 struct ieee80211com *ic = &sc->sc_ic;
2442 int i, error;
2443
2444 zyd_stop(ifp, 0);
2445
2446 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2447 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2448 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2449 if (error != 0)
2450 return error;
2451
2452 /* we'll do software WEP decryption for now */
2453 DPRINTF(("setting encryption type\n"));
2454 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2455 if (error != 0)
2456 return error;
2457
2458 /* promiscuous mode */
2459 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2460 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2461
2462 (void)zyd_set_rxfilter(sc);
2463
2464 /* switch radio transmitter ON */
2465 (void)zyd_switch_radio(sc, 1);
2466
2467 /* set basic rates */
2468 if (ic->ic_curmode == IEEE80211_MODE_11B)
2469 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2470 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2471 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2472 else /* assumes 802.11b/g */
2473 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2474
2475 /* set mandatory rates */
2476 if (ic->ic_curmode == IEEE80211_MODE_11B)
2477 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2478 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2479 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2480 else /* assumes 802.11b/g */
2481 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2482
2483 /* set default BSS channel */
2484 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2485 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2486
2487 /* enable interrupts */
2488 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2489
2490 /*
2491 * Allocate Tx and Rx xfer queues.
2492 */
2493 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2494 printf("%s: could not allocate Tx list\n",
2495 device_xname(sc->sc_dev));
2496 goto fail;
2497 }
2498 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2499 printf("%s: could not allocate Rx list\n",
2500 device_xname(sc->sc_dev));
2501 goto fail;
2502 }
2503
2504 /*
2505 * Start up the receive pipe.
2506 */
2507 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2508 struct zyd_rx_data *data = &sc->rx_data[i];
2509
2510 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2511 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2512 error = usbd_transfer(data->xfer);
2513 if (error != USBD_IN_PROGRESS && error != 0) {
2514 printf("%s: could not queue Rx transfer\n",
2515 device_xname(sc->sc_dev));
2516 goto fail;
2517 }
2518 }
2519
2520 ifp->if_flags &= ~IFF_OACTIVE;
2521 ifp->if_flags |= IFF_RUNNING;
2522
2523 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2524 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2525 else
2526 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2527
2528 return 0;
2529
2530fail: zyd_stop(ifp, 1);
2531 return error;
2532}
2533
2534Static void
2535zyd_stop(struct ifnet *ifp, int disable)
2536{
2537 struct zyd_softc *sc = ifp->if_softc;
2538 struct ieee80211com *ic = &sc->sc_ic;
2539
2540 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2541
2542 sc->tx_timer = 0;
2543 ifp->if_timer = 0;
2544 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2545
2546 /* switch radio transmitter OFF */
2547 (void)zyd_switch_radio(sc, 0);
2548
2549 /* disable Rx */
2550 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2551
2552 /* disable interrupts */
2553 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2554
2555 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2556 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2557
2558 zyd_free_rx_list(sc);
2559 zyd_free_tx_list(sc);
2560}
2561
2562Static int
2563zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2564{
2565 usb_device_request_t req;
2566 uint16_t addr;
2567 uint8_t stat;
2568
2569 DPRINTF(("firmware size=%zu\n", size));
2570
2571 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2572 req.bRequest = ZYD_DOWNLOADREQ;
2573 USETW(req.wIndex, 0);
2574
2575 addr = ZYD_FIRMWARE_START_ADDR;
2576 while (size > 0) {
2577#if 0
2578 const int mlen = min(size, 4096);
2579#else
2580 /*
2581 * XXXX: When the transfer size is 4096 bytes, it is not
2582 * likely to be able to transfer it.
2583 * The cause is port or machine or chip?
2584 */
2585 const int mlen = min(size, 64);
2586#endif
2587
2588 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2589 addr));
2590
2591 USETW(req.wValue, addr);
2592 USETW(req.wLength, mlen);
2593 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2594 return EIO;
2595
2596 addr += mlen / 2;
2597 fw += mlen;
2598 size -= mlen;
2599 }
2600
2601 /* check whether the upload succeeded */
2602 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2603 req.bRequest = ZYD_DOWNLOADSTS;
2604 USETW(req.wValue, 0);
2605 USETW(req.wIndex, 0);
2606 USETW(req.wLength, sizeof(stat));
2607 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2608 return EIO;
2609
2610 return (stat & 0x80) ? EIO : 0;
2611}
2612
2613Static void
2614zyd_iter_func(void *arg, struct ieee80211_node *ni)
2615{
2616 struct zyd_softc *sc = arg;
2617 struct zyd_node *zn = (struct zyd_node *)ni;
2618
2619 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2620}
2621
2622Static void
2623zyd_amrr_timeout(void *arg)
2624{
2625 struct zyd_softc *sc = arg;
2626 struct ieee80211com *ic = &sc->sc_ic;
2627 int s;
2628
2629 s = splnet();
2630 if (ic->ic_opmode == IEEE80211_M_STA)
2631 zyd_iter_func(sc, ic->ic_bss);
2632 else
2633 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2634 splx(s);
2635
2636 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2637}
2638
2639Static void
2640zyd_newassoc(struct ieee80211_node *ni, int isnew)
2641{
2642 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2643 int i;
2644
2645 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2646
2647 /* set rate to some reasonable initial value */
2648 for (i = ni->ni_rates.rs_nrates - 1;
2649 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2650 i--);
2651 ni->ni_txrate = i;
2652}
2653
2654int
2655zyd_activate(device_t self, enum devact act)
2656{
2657 struct zyd_softc *sc = device_private(self);
2658
2659 switch (act) {
2660 case DVACT_DEACTIVATE:
2661 if_deactivate(&sc->sc_if);
2662 return 0;
2663 default:
2664 return EOPNOTSUPP;
2665 }
2666}
2667