1 | /* $NetBSD: acpi_srat.c,v 1.3 2010/03/05 14:00:17 jruoho Exp $ */ |
2 | |
3 | /* |
4 | * Copyright (c) 2009 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * This code is derived from software contributed to The NetBSD Foundation |
8 | * by Christoph Egger. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
29 | * POSSIBILITY OF SUCH DAMAGE. |
30 | */ |
31 | |
32 | #include <sys/cdefs.h> |
33 | __KERNEL_RCSID(0, "$NetBSD: acpi_srat.c,v 1.3 2010/03/05 14:00:17 jruoho Exp $" ); |
34 | |
35 | #include <sys/param.h> |
36 | #include <sys/kmem.h> |
37 | #include <sys/systm.h> |
38 | |
39 | #include <dev/acpi/acpivar.h> |
40 | #include <dev/acpi/acpi_srat.h> |
41 | |
42 | static ACPI_TABLE_SRAT *srat; |
43 | |
44 | struct acpisrat_node { |
45 | acpisrat_nodeid_t nodeid; |
46 | uint32_t ncpus; /* Number of cpus in this node */ |
47 | struct acpisrat_cpu **cpu; /* Array of cpus */ |
48 | uint32_t nmems; /* Number of memory ranges in this node */ |
49 | struct acpisrat_mem **mem; /* Array of memory ranges */ |
50 | }; |
51 | |
52 | static uint32_t nnodes; /* Number of NUMA nodes */ |
53 | static struct acpisrat_node *node_array; /* Array of NUMA nodes */ |
54 | static uint32_t ncpus; /* Number of CPUs */ |
55 | static struct acpisrat_cpu *cpu_array; /* Array of cpus */ |
56 | static uint32_t nmems; /* Number of Memory ranges */ |
57 | static struct acpisrat_mem *mem_array; |
58 | |
59 | |
60 | struct cpulist { |
61 | struct acpisrat_cpu cpu; |
62 | TAILQ_ENTRY(cpulist) entry; |
63 | }; |
64 | |
65 | static TAILQ_HEAD(, cpulist) cpulisthead; |
66 | |
67 | #define CPU_INIT TAILQ_INIT(&cpulisthead); |
68 | #define CPU_FOREACH(cpu) TAILQ_FOREACH(cpu, &cpulisthead, entry) |
69 | #define CPU_ADD(cpu) TAILQ_INSERT_TAIL(&cpulisthead, cpu, entry) |
70 | #define CPU_REM(cpu) TAILQ_REMOVE(&cpulisthead, cpu, entry) |
71 | #define CPU_FIRST TAILQ_FIRST(&cpulisthead) |
72 | |
73 | |
74 | struct memlist { |
75 | struct acpisrat_mem mem; |
76 | TAILQ_ENTRY(memlist) entry; |
77 | }; |
78 | |
79 | static TAILQ_HEAD(, memlist) memlisthead; |
80 | |
81 | #define MEM_INIT TAILQ_INIT(&memlisthead) |
82 | #define MEM_FOREACH(mem) TAILQ_FOREACH(mem, &memlisthead, entry) |
83 | #define MEM_ADD(mem) TAILQ_INSERT_TAIL(&memlisthead, mem, entry) |
84 | #define MEM_ADD_BEFORE(mem, b) TAILQ_INSERT_BEFORE(b, mem, entry) |
85 | #define MEM_REM(mem) TAILQ_REMOVE(&memlisthead, mem, entry) |
86 | #define MEM_FIRST TAILQ_FIRST(&memlisthead) |
87 | |
88 | |
89 | static struct cpulist * |
90 | cpu_alloc(void) |
91 | { |
92 | return kmem_zalloc(sizeof(struct cpulist), KM_NOSLEEP); |
93 | } |
94 | |
95 | static void |
96 | cpu_free(struct cpulist *c) |
97 | { |
98 | kmem_free(c, sizeof(struct cpulist)); |
99 | } |
100 | |
101 | #if 0 |
102 | static struct cpulist * |
103 | cpu_get(acpisrat_nodeid_t nodeid) |
104 | { |
105 | struct cpulist *tmp; |
106 | |
107 | CPU_FOREACH(tmp) { |
108 | if (tmp->cpu.nodeid == nodeid) |
109 | return tmp; |
110 | } |
111 | |
112 | return NULL; |
113 | } |
114 | #endif |
115 | |
116 | static struct memlist * |
117 | mem_alloc(void) |
118 | { |
119 | return kmem_zalloc(sizeof(struct memlist), KM_NOSLEEP); |
120 | } |
121 | |
122 | static void |
123 | mem_free(struct memlist *m) |
124 | { |
125 | kmem_free(m, sizeof(struct memlist)); |
126 | } |
127 | |
128 | static struct memlist * |
129 | mem_get(acpisrat_nodeid_t nodeid) |
130 | { |
131 | struct memlist *tmp; |
132 | |
133 | MEM_FOREACH(tmp) { |
134 | if (tmp->mem.nodeid == nodeid) |
135 | return tmp; |
136 | } |
137 | |
138 | return NULL; |
139 | } |
140 | |
141 | |
142 | bool |
143 | acpisrat_exist(void) |
144 | { |
145 | ACPI_TABLE_HEADER *table; |
146 | ACPI_STATUS rv; |
147 | |
148 | rv = AcpiGetTable(ACPI_SIG_SRAT, 1, (ACPI_TABLE_HEADER **)&table); |
149 | if (ACPI_FAILURE(rv)) |
150 | return false; |
151 | |
152 | /* Check if header is valid */ |
153 | if (table == NULL) |
154 | return false; |
155 | |
156 | if (table->Length == 0xffffffff) |
157 | return false; |
158 | |
159 | srat = (ACPI_TABLE_SRAT *)table; |
160 | |
161 | return true; |
162 | } |
163 | |
164 | static int |
165 | acpisrat_parse(void) |
166 | { |
167 | ACPI_SUBTABLE_HEADER *subtable; |
168 | ACPI_SRAT_CPU_AFFINITY *srat_cpu; |
169 | ACPI_SRAT_MEM_AFFINITY *srat_mem; |
170 | ACPI_SRAT_X2APIC_CPU_AFFINITY *srat_x2apic; |
171 | |
172 | acpisrat_nodeid_t nodeid; |
173 | struct cpulist *cpuentry = NULL; |
174 | struct memlist *mementry; |
175 | uint32_t srat_pos; |
176 | bool ignore_cpu_affinity = false; |
177 | |
178 | KASSERT(srat != NULL); |
179 | |
180 | /* Content starts right after the header */ |
181 | srat_pos = sizeof(ACPI_TABLE_SRAT); |
182 | |
183 | while (srat_pos < srat->Header.Length) { |
184 | subtable = (ACPI_SUBTABLE_HEADER *)((char *)srat + srat_pos); |
185 | srat_pos += subtable->Length; |
186 | |
187 | switch (subtable->Type) { |
188 | case ACPI_SRAT_TYPE_CPU_AFFINITY: |
189 | if (ignore_cpu_affinity) |
190 | continue; |
191 | |
192 | srat_cpu = (ACPI_SRAT_CPU_AFFINITY *)subtable; |
193 | nodeid = (srat_cpu->ProximityDomainHi[2] << 24) | |
194 | (srat_cpu->ProximityDomainHi[1] << 16) | |
195 | (srat_cpu->ProximityDomainHi[0] << 8) | |
196 | (srat_cpu->ProximityDomainLo); |
197 | |
198 | cpuentry = cpu_alloc(); |
199 | if (cpuentry == NULL) |
200 | return ENOMEM; |
201 | CPU_ADD(cpuentry); |
202 | |
203 | cpuentry->cpu.nodeid = nodeid; |
204 | cpuentry->cpu.apicid = srat_cpu->ApicId; |
205 | cpuentry->cpu.sapiceid = srat_cpu->LocalSapicEid; |
206 | cpuentry->cpu.flags = srat_cpu->Flags; |
207 | cpuentry->cpu.clockdomain = srat_cpu->ClockDomain; |
208 | break; |
209 | |
210 | case ACPI_SRAT_TYPE_MEMORY_AFFINITY: |
211 | srat_mem = (ACPI_SRAT_MEM_AFFINITY *)subtable; |
212 | nodeid = srat_mem->ProximityDomain; |
213 | |
214 | mementry = mem_alloc(); |
215 | if (mementry == NULL) |
216 | return ENOMEM; |
217 | MEM_ADD(mementry); |
218 | |
219 | mementry->mem.nodeid = nodeid; |
220 | mementry->mem.baseaddress = srat_mem->BaseAddress; |
221 | mementry->mem.length = srat_mem->Length; |
222 | mementry->mem.flags = srat_mem->Flags; |
223 | break; |
224 | |
225 | case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: |
226 | srat_x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)subtable; |
227 | nodeid = srat_x2apic->ProximityDomain; |
228 | |
229 | /* This table entry overrides |
230 | * ACPI_SRAT_TYPE_CPU_AFFINITY. |
231 | */ |
232 | if (!ignore_cpu_affinity) { |
233 | struct cpulist *citer; |
234 | while ((citer = CPU_FIRST) != NULL) { |
235 | CPU_REM(citer); |
236 | cpu_free(citer); |
237 | } |
238 | ignore_cpu_affinity = true; |
239 | } |
240 | |
241 | cpuentry = cpu_alloc(); |
242 | if (cpuentry == NULL) |
243 | return ENOMEM; |
244 | CPU_ADD(cpuentry); |
245 | |
246 | cpuentry->cpu.nodeid = nodeid; |
247 | cpuentry->cpu.apicid = srat_x2apic->ApicId; |
248 | cpuentry->cpu.clockdomain = srat_x2apic->ClockDomain; |
249 | cpuentry->cpu.flags = srat_x2apic->Flags; |
250 | break; |
251 | |
252 | case ACPI_SRAT_TYPE_RESERVED: |
253 | printf("ACPI SRAT subtable reserved, length: 0x%x\n" , |
254 | subtable->Length); |
255 | break; |
256 | } |
257 | } |
258 | |
259 | return 0; |
260 | } |
261 | |
262 | static int |
263 | acpisrat_quirks(void) |
264 | { |
265 | struct cpulist *citer; |
266 | struct memlist *mem, *miter; |
267 | |
268 | /* Some sanity checks. */ |
269 | |
270 | /* Deal with holes in the memory nodes. |
271 | * BIOS doesn't enlist memory nodes which |
272 | * don't have any memory modules plugged in. |
273 | * This behaviour has been observed on AMD machines. |
274 | * |
275 | * Do that by searching for CPUs in NUMA nodes |
276 | * which don't exist in the memory and then insert |
277 | * a zero memory range for the missing node. |
278 | */ |
279 | CPU_FOREACH(citer) { |
280 | mem = mem_get(citer->cpu.nodeid); |
281 | if (mem != NULL) |
282 | continue; |
283 | mem = mem_alloc(); |
284 | if (mem == NULL) |
285 | return ENOMEM; |
286 | mem->mem.nodeid = citer->cpu.nodeid; |
287 | /* all other fields are already zero filled */ |
288 | |
289 | MEM_FOREACH(miter) { |
290 | if (miter->mem.nodeid < citer->cpu.nodeid) |
291 | continue; |
292 | MEM_ADD_BEFORE(mem, miter); |
293 | break; |
294 | } |
295 | } |
296 | |
297 | return 0; |
298 | } |
299 | |
300 | int |
301 | acpisrat_init(void) |
302 | { |
303 | if (!acpisrat_exist()) |
304 | return EEXIST; |
305 | return acpisrat_refresh(); |
306 | } |
307 | |
308 | int |
309 | acpisrat_refresh(void) |
310 | { |
311 | int rc, i, j, k; |
312 | struct cpulist *citer; |
313 | struct memlist *miter; |
314 | uint32_t cnodes = 0, mnodes = 0; |
315 | |
316 | CPU_INIT; |
317 | MEM_INIT; |
318 | |
319 | rc = acpisrat_parse(); |
320 | if (rc) |
321 | return rc; |
322 | |
323 | rc = acpisrat_quirks(); |
324 | if (rc) |
325 | return rc; |
326 | |
327 | /* cleanup resources */ |
328 | rc = acpisrat_exit(); |
329 | if (rc) |
330 | return rc; |
331 | |
332 | nnodes = 0; |
333 | ncpus = 0; |
334 | CPU_FOREACH(citer) { |
335 | cnodes = MAX(citer->cpu.nodeid, cnodes); |
336 | ncpus++; |
337 | } |
338 | |
339 | nmems = 0; |
340 | MEM_FOREACH(miter) { |
341 | mnodes = MAX(miter->mem.nodeid, mnodes); |
342 | nmems++; |
343 | } |
344 | |
345 | nnodes = MAX(cnodes, mnodes) + 1; |
346 | |
347 | node_array = kmem_zalloc(nnodes * sizeof(struct acpisrat_node), |
348 | KM_NOSLEEP); |
349 | if (node_array == NULL) |
350 | return ENOMEM; |
351 | |
352 | cpu_array = kmem_zalloc(ncpus * sizeof(struct acpisrat_cpu), |
353 | KM_NOSLEEP); |
354 | if (cpu_array == NULL) |
355 | return ENOMEM; |
356 | |
357 | mem_array = kmem_zalloc(nmems * sizeof(struct acpisrat_mem), |
358 | KM_NOSLEEP); |
359 | if (mem_array == NULL) |
360 | return ENOMEM; |
361 | |
362 | i = 0; |
363 | CPU_FOREACH(citer) { |
364 | memcpy(&cpu_array[i], &citer->cpu, sizeof(struct acpisrat_cpu)); |
365 | i++; |
366 | node_array[citer->cpu.nodeid].ncpus++; |
367 | } |
368 | |
369 | i = 0; |
370 | MEM_FOREACH(miter) { |
371 | memcpy(&mem_array[i], &miter->mem, sizeof(struct acpisrat_mem)); |
372 | i++; |
373 | node_array[miter->mem.nodeid].nmems++; |
374 | } |
375 | |
376 | for (i = 0; i < nnodes; i++) { |
377 | node_array[i].nodeid = i; |
378 | |
379 | node_array[i].cpu = kmem_zalloc(node_array[i].ncpus * |
380 | sizeof(struct acpisrat_cpu *), KM_NOSLEEP); |
381 | node_array[i].mem = kmem_zalloc(node_array[i].nmems * |
382 | sizeof(struct acpisrat_mem *), KM_NOSLEEP); |
383 | |
384 | k = 0; |
385 | for (j = 0; j < ncpus; j++) { |
386 | if (cpu_array[j].nodeid != i) |
387 | continue; |
388 | node_array[i].cpu[k] = &cpu_array[j]; |
389 | k++; |
390 | } |
391 | |
392 | k = 0; |
393 | for (j = 0; j < nmems; j++) { |
394 | if (mem_array[j].nodeid != i) |
395 | continue; |
396 | node_array[i].mem[k] = &mem_array[j]; |
397 | k++; |
398 | } |
399 | } |
400 | |
401 | while ((citer = CPU_FIRST) != NULL) { |
402 | CPU_REM(citer); |
403 | cpu_free(citer); |
404 | } |
405 | |
406 | while ((miter = MEM_FIRST) != NULL) { |
407 | MEM_REM(miter); |
408 | mem_free(miter); |
409 | } |
410 | |
411 | return 0; |
412 | } |
413 | |
414 | |
415 | int |
416 | acpisrat_exit(void) |
417 | { |
418 | int i; |
419 | |
420 | if (node_array) { |
421 | for (i = 0; i < nnodes; i++) { |
422 | if (node_array[i].cpu) |
423 | kmem_free(node_array[i].cpu, |
424 | node_array[i].ncpus * sizeof(struct acpisrat_cpu *)); |
425 | if (node_array[i].mem) |
426 | kmem_free(node_array[i].mem, |
427 | node_array[i].nmems * sizeof(struct acpisrat_mem *)); |
428 | } |
429 | kmem_free(node_array, nnodes * sizeof(struct acpisrat_node)); |
430 | } |
431 | node_array = NULL; |
432 | |
433 | if (cpu_array) |
434 | kmem_free(cpu_array, ncpus * sizeof(struct acpisrat_cpu)); |
435 | cpu_array = NULL; |
436 | |
437 | if (mem_array) |
438 | kmem_free(mem_array, nmems * sizeof(struct acpisrat_mem)); |
439 | mem_array = NULL; |
440 | |
441 | nnodes = 0; |
442 | ncpus = 0; |
443 | nmems = 0; |
444 | |
445 | return 0; |
446 | } |
447 | |
448 | |
449 | void |
450 | acpisrat_dump(void) |
451 | { |
452 | uint32_t i, j, nn, nc, nm; |
453 | struct acpisrat_cpu c; |
454 | struct acpisrat_mem m; |
455 | |
456 | nn = acpisrat_nodes(); |
457 | aprint_debug("SRAT: %u NUMA nodes\n" , nn); |
458 | for (i = 0; i < nn; i++) { |
459 | nc = acpisrat_node_cpus(i); |
460 | for (j = 0; j < nc; j++) { |
461 | acpisrat_cpu(i, j, &c); |
462 | aprint_debug("SRAT: node %u cpu %u " |
463 | "(apic %u, sapic %u, flags %u, clockdomain %u)\n" , |
464 | c.nodeid, j, c.apicid, c.sapiceid, c.flags, |
465 | c.clockdomain); |
466 | } |
467 | |
468 | nm = acpisrat_node_memoryranges(i); |
469 | for (j = 0; j < nm; j++) { |
470 | acpisrat_mem(i, j, &m); |
471 | aprint_debug("SRAT: node %u memory range %u (0x%" |
472 | PRIx64" - 0x%" PRIx64" flags %u)\n" , |
473 | m.nodeid, j, m.baseaddress, |
474 | m.baseaddress + m.length, m.flags); |
475 | } |
476 | } |
477 | } |
478 | |
479 | uint32_t |
480 | acpisrat_nodes(void) |
481 | { |
482 | return nnodes; |
483 | } |
484 | |
485 | uint32_t |
486 | acpisrat_node_cpus(acpisrat_nodeid_t nodeid) |
487 | { |
488 | return node_array[nodeid].ncpus; |
489 | } |
490 | |
491 | uint32_t |
492 | acpisrat_node_memoryranges(acpisrat_nodeid_t nodeid) |
493 | { |
494 | return node_array[nodeid].nmems; |
495 | } |
496 | |
497 | void |
498 | acpisrat_cpu(acpisrat_nodeid_t nodeid, uint32_t cpunum, |
499 | struct acpisrat_cpu *c) |
500 | { |
501 | memcpy(c, node_array[nodeid].cpu[cpunum], |
502 | sizeof(struct acpisrat_cpu)); |
503 | } |
504 | |
505 | void |
506 | acpisrat_mem(acpisrat_nodeid_t nodeid, uint32_t memrange, |
507 | struct acpisrat_mem *mem) |
508 | { |
509 | memcpy(mem, node_array[nodeid].mem[memrange], |
510 | sizeof(struct acpisrat_mem)); |
511 | } |
512 | |