1 | /* $NetBSD: rf_states.c,v 1.50 2016/01/03 08:17:24 mlelstv Exp $ */ |
2 | /* |
3 | * Copyright (c) 1995 Carnegie-Mellon University. |
4 | * All rights reserved. |
5 | * |
6 | * Author: Mark Holland, William V. Courtright II, Robby Findler |
7 | * |
8 | * Permission to use, copy, modify and distribute this software and |
9 | * its documentation is hereby granted, provided that both the copyright |
10 | * notice and this permission notice appear in all copies of the |
11 | * software, derivative works or modified versions, and any portions |
12 | * thereof, and that both notices appear in supporting documentation. |
13 | * |
14 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
15 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND |
16 | * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
17 | * |
18 | * Carnegie Mellon requests users of this software to return to |
19 | * |
20 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
21 | * School of Computer Science |
22 | * Carnegie Mellon University |
23 | * Pittsburgh PA 15213-3890 |
24 | * |
25 | * any improvements or extensions that they make and grant Carnegie the |
26 | * rights to redistribute these changes. |
27 | */ |
28 | |
29 | #include <sys/cdefs.h> |
30 | __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.50 2016/01/03 08:17:24 mlelstv Exp $" ); |
31 | |
32 | #include <sys/errno.h> |
33 | |
34 | #include "rf_archs.h" |
35 | #include "rf_threadstuff.h" |
36 | #include "rf_raid.h" |
37 | #include "rf_dag.h" |
38 | #include "rf_desc.h" |
39 | #include "rf_aselect.h" |
40 | #include "rf_general.h" |
41 | #include "rf_states.h" |
42 | #include "rf_dagutils.h" |
43 | #include "rf_driver.h" |
44 | #include "rf_engine.h" |
45 | #include "rf_map.h" |
46 | #include "rf_etimer.h" |
47 | #include "rf_kintf.h" |
48 | #include "rf_paritymap.h" |
49 | |
50 | #ifndef RF_DEBUG_STATES |
51 | #define RF_DEBUG_STATES 0 |
52 | #endif |
53 | |
54 | /* prototypes for some of the available states. |
55 | |
56 | States must: |
57 | |
58 | - not block. |
59 | |
60 | - either schedule rf_ContinueRaidAccess as a callback and return |
61 | RF_TRUE, or complete all of their work and return RF_FALSE. |
62 | |
63 | - increment desc->state when they have finished their work. |
64 | */ |
65 | |
66 | #if RF_DEBUG_STATES |
67 | static char * |
68 | StateName(RF_AccessState_t state) |
69 | { |
70 | switch (state) { |
71 | case rf_QuiesceState:return "QuiesceState" ; |
72 | case rf_MapState: |
73 | return "MapState" ; |
74 | case rf_LockState: |
75 | return "LockState" ; |
76 | case rf_CreateDAGState: |
77 | return "CreateDAGState" ; |
78 | case rf_ExecuteDAGState: |
79 | return "ExecuteDAGState" ; |
80 | case rf_ProcessDAGState: |
81 | return "ProcessDAGState" ; |
82 | case rf_CleanupState: |
83 | return "CleanupState" ; |
84 | case rf_LastState: |
85 | return "LastState" ; |
86 | case rf_IncrAccessesCountState: |
87 | return "IncrAccessesCountState" ; |
88 | case rf_DecrAccessesCountState: |
89 | return "DecrAccessesCountState" ; |
90 | default: |
91 | return "!!! UnnamedState !!!" ; |
92 | } |
93 | } |
94 | #endif |
95 | |
96 | void |
97 | rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc) |
98 | { |
99 | int suspended = RF_FALSE; |
100 | int current_state_index = desc->state; |
101 | RF_AccessState_t current_state = desc->states[current_state_index]; |
102 | #if RF_DEBUG_STATES |
103 | int unit = desc->raidPtr->raidid; |
104 | #endif |
105 | |
106 | do { |
107 | |
108 | current_state_index = desc->state; |
109 | current_state = desc->states[current_state_index]; |
110 | |
111 | switch (current_state) { |
112 | |
113 | case rf_QuiesceState: |
114 | suspended = rf_State_Quiesce(desc); |
115 | break; |
116 | case rf_IncrAccessesCountState: |
117 | suspended = rf_State_IncrAccessCount(desc); |
118 | break; |
119 | case rf_MapState: |
120 | suspended = rf_State_Map(desc); |
121 | break; |
122 | case rf_LockState: |
123 | suspended = rf_State_Lock(desc); |
124 | break; |
125 | case rf_CreateDAGState: |
126 | suspended = rf_State_CreateDAG(desc); |
127 | break; |
128 | case rf_ExecuteDAGState: |
129 | suspended = rf_State_ExecuteDAG(desc); |
130 | break; |
131 | case rf_ProcessDAGState: |
132 | suspended = rf_State_ProcessDAG(desc); |
133 | break; |
134 | case rf_CleanupState: |
135 | suspended = rf_State_Cleanup(desc); |
136 | break; |
137 | case rf_DecrAccessesCountState: |
138 | suspended = rf_State_DecrAccessCount(desc); |
139 | break; |
140 | case rf_LastState: |
141 | suspended = rf_State_LastState(desc); |
142 | break; |
143 | } |
144 | |
145 | /* after this point, we cannot dereference desc since |
146 | * desc may have been freed. desc is only freed in |
147 | * LastState, so if we renter this function or loop |
148 | * back up, desc should be valid. */ |
149 | |
150 | #if RF_DEBUG_STATES |
151 | if (rf_printStatesDebug) { |
152 | printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n" , |
153 | unit, StateName(current_state), |
154 | current_state_index, (long) desc, |
155 | suspended ? "callback scheduled" : "looping" ); |
156 | } |
157 | #endif |
158 | } while (!suspended && current_state != rf_LastState); |
159 | |
160 | return; |
161 | } |
162 | |
163 | |
164 | void |
165 | rf_ContinueDagAccess(RF_DagList_t *dagList) |
166 | { |
167 | #if RF_ACC_TRACE > 0 |
168 | RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec); |
169 | RF_Etimer_t timer; |
170 | #endif |
171 | RF_RaidAccessDesc_t *desc; |
172 | RF_DagHeader_t *dag_h; |
173 | int i; |
174 | |
175 | desc = dagList->desc; |
176 | |
177 | #if RF_ACC_TRACE > 0 |
178 | timer = tracerec->timer; |
179 | RF_ETIMER_STOP(timer); |
180 | RF_ETIMER_EVAL(timer); |
181 | tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer); |
182 | RF_ETIMER_START(tracerec->timer); |
183 | #endif |
184 | |
185 | /* skip to dag which just finished */ |
186 | dag_h = dagList->dags; |
187 | for (i = 0; i < dagList->numDagsDone; i++) { |
188 | dag_h = dag_h->next; |
189 | } |
190 | |
191 | /* check to see if retry is required */ |
192 | if (dag_h->status == rf_rollBackward) { |
193 | /* when a dag fails, mark desc status as bad and allow |
194 | * all other dags in the desc to execute to |
195 | * completion. then, free all dags and start over */ |
196 | desc->status = 1; /* bad status */ |
197 | #if 0 |
198 | printf("raid%d: DAG failure: %c addr 0x%lx " |
199 | "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n" , |
200 | desc->raidPtr->raidid, desc->type, |
201 | (long) desc->raidAddress, |
202 | (long) desc->raidAddress, (int) desc->numBlocks, |
203 | (int) desc->numBlocks, |
204 | (unsigned long) (desc->bufPtr), desc->state); |
205 | #endif |
206 | } |
207 | dagList->numDagsDone++; |
208 | rf_ContinueRaidAccess(desc); |
209 | } |
210 | |
211 | int |
212 | rf_State_LastState(RF_RaidAccessDesc_t *desc) |
213 | { |
214 | void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc; |
215 | RF_CBParam_t callbackArg; |
216 | |
217 | callbackArg.p = desc->callbackArg; |
218 | |
219 | /* |
220 | * We don't support non-async IO. |
221 | */ |
222 | KASSERT(desc->async_flag); |
223 | |
224 | /* |
225 | * The parity_map hook has to go here, because the iodone |
226 | * callback goes straight into the kintf layer. |
227 | */ |
228 | if (desc->raidPtr->parity_map != NULL && |
229 | desc->type == RF_IO_TYPE_WRITE) |
230 | rf_paritymap_end(desc->raidPtr->parity_map, |
231 | desc->raidAddress, desc->numBlocks); |
232 | |
233 | /* printf("Calling raiddone on 0x%x\n",desc->bp); */ |
234 | raiddone(desc->raidPtr, desc->bp); /* access came through ioctl */ |
235 | |
236 | if (callbackFunc) |
237 | callbackFunc(callbackArg); |
238 | rf_FreeRaidAccDesc(desc); |
239 | |
240 | return RF_FALSE; |
241 | } |
242 | |
243 | int |
244 | rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc) |
245 | { |
246 | RF_Raid_t *raidPtr; |
247 | |
248 | raidPtr = desc->raidPtr; |
249 | /* Bummer. We have to do this to be 100% safe w.r.t. the increment |
250 | * below */ |
251 | rf_lock_mutex2(raidPtr->access_suspend_mutex); |
252 | raidPtr->accs_in_flight++; /* used to detect quiescence */ |
253 | rf_unlock_mutex2(raidPtr->access_suspend_mutex); |
254 | |
255 | desc->state++; |
256 | return RF_FALSE; |
257 | } |
258 | |
259 | int |
260 | rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc) |
261 | { |
262 | RF_Raid_t *raidPtr; |
263 | |
264 | raidPtr = desc->raidPtr; |
265 | |
266 | rf_lock_mutex2(raidPtr->access_suspend_mutex); |
267 | raidPtr->accs_in_flight--; |
268 | if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) { |
269 | rf_SignalQuiescenceLock(raidPtr); |
270 | } |
271 | rf_unlock_mutex2(raidPtr->access_suspend_mutex); |
272 | |
273 | desc->state++; |
274 | return RF_FALSE; |
275 | } |
276 | |
277 | int |
278 | rf_State_Quiesce(RF_RaidAccessDesc_t *desc) |
279 | { |
280 | #if RF_ACC_TRACE > 0 |
281 | RF_AccTraceEntry_t *tracerec = &desc->tracerec; |
282 | RF_Etimer_t timer; |
283 | #endif |
284 | RF_CallbackDesc_t *cb; |
285 | RF_Raid_t *raidPtr; |
286 | int suspended = RF_FALSE; |
287 | int need_cb, used_cb; |
288 | |
289 | raidPtr = desc->raidPtr; |
290 | |
291 | #if RF_ACC_TRACE > 0 |
292 | RF_ETIMER_START(timer); |
293 | RF_ETIMER_START(desc->timer); |
294 | #endif |
295 | |
296 | need_cb = 0; |
297 | used_cb = 0; |
298 | cb = NULL; |
299 | |
300 | rf_lock_mutex2(raidPtr->access_suspend_mutex); |
301 | /* Do an initial check to see if we might need a callback structure */ |
302 | if (raidPtr->accesses_suspended) { |
303 | need_cb = 1; |
304 | } |
305 | rf_unlock_mutex2(raidPtr->access_suspend_mutex); |
306 | |
307 | if (need_cb) { |
308 | /* create a callback if we might need it... |
309 | and we likely do. */ |
310 | cb = rf_AllocCallbackDesc(); |
311 | } |
312 | |
313 | rf_lock_mutex2(raidPtr->access_suspend_mutex); |
314 | if (raidPtr->accesses_suspended) { |
315 | cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess; |
316 | cb->callbackArg.p = (void *) desc; |
317 | cb->next = raidPtr->quiesce_wait_list; |
318 | raidPtr->quiesce_wait_list = cb; |
319 | suspended = RF_TRUE; |
320 | used_cb = 1; |
321 | } |
322 | rf_unlock_mutex2(raidPtr->access_suspend_mutex); |
323 | |
324 | if ((need_cb == 1) && (used_cb == 0)) { |
325 | rf_FreeCallbackDesc(cb); |
326 | } |
327 | |
328 | #if RF_ACC_TRACE > 0 |
329 | RF_ETIMER_STOP(timer); |
330 | RF_ETIMER_EVAL(timer); |
331 | tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer); |
332 | #endif |
333 | |
334 | #if RF_DEBUG_QUIESCE |
335 | if (suspended && rf_quiesceDebug) |
336 | printf("Stalling access due to quiescence lock\n" ); |
337 | #endif |
338 | desc->state++; |
339 | return suspended; |
340 | } |
341 | |
342 | int |
343 | rf_State_Map(RF_RaidAccessDesc_t *desc) |
344 | { |
345 | RF_Raid_t *raidPtr = desc->raidPtr; |
346 | #if RF_ACC_TRACE > 0 |
347 | RF_AccTraceEntry_t *tracerec = &desc->tracerec; |
348 | RF_Etimer_t timer; |
349 | |
350 | RF_ETIMER_START(timer); |
351 | #endif |
352 | |
353 | if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks, |
354 | desc->bufPtr, RF_DONT_REMAP))) |
355 | RF_PANIC(); |
356 | |
357 | #if RF_ACC_TRACE > 0 |
358 | RF_ETIMER_STOP(timer); |
359 | RF_ETIMER_EVAL(timer); |
360 | tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer); |
361 | #endif |
362 | |
363 | desc->state++; |
364 | return RF_FALSE; |
365 | } |
366 | |
367 | int |
368 | rf_State_Lock(RF_RaidAccessDesc_t *desc) |
369 | { |
370 | #if RF_ACC_TRACE > 0 |
371 | RF_AccTraceEntry_t *tracerec = &desc->tracerec; |
372 | RF_Etimer_t timer; |
373 | #endif |
374 | RF_Raid_t *raidPtr = desc->raidPtr; |
375 | RF_AccessStripeMapHeader_t *asmh = desc->asmap; |
376 | RF_AccessStripeMap_t *asm_p; |
377 | RF_StripeNum_t lastStripeID = -1; |
378 | int suspended = RF_FALSE; |
379 | |
380 | #if RF_ACC_TRACE > 0 |
381 | RF_ETIMER_START(timer); |
382 | #endif |
383 | |
384 | /* acquire each lock that we don't already hold */ |
385 | for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { |
386 | RF_ASSERT(RF_IO_IS_R_OR_W(desc->type)); |
387 | if (!rf_suppressLocksAndLargeWrites && |
388 | asm_p->parityInfo && |
389 | !(desc->flags & RF_DAG_SUPPRESS_LOCKS) && |
390 | !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) { |
391 | asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED; |
392 | /* locks must be acquired hierarchically */ |
393 | RF_ASSERT(asm_p->stripeID > lastStripeID); |
394 | lastStripeID = asm_p->stripeID; |
395 | |
396 | RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type, |
397 | (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p, |
398 | raidPtr->Layout.dataSectorsPerStripe); |
399 | if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID, |
400 | &asm_p->lockReqDesc)) { |
401 | suspended = RF_TRUE; |
402 | break; |
403 | } |
404 | } |
405 | if (desc->type == RF_IO_TYPE_WRITE && |
406 | raidPtr->status == rf_rs_reconstructing) { |
407 | if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) { |
408 | int val; |
409 | |
410 | asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED; |
411 | val = rf_ForceOrBlockRecon(raidPtr, asm_p, |
412 | (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc); |
413 | if (val == 0) { |
414 | asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED; |
415 | } else { |
416 | suspended = RF_TRUE; |
417 | break; |
418 | } |
419 | } else { |
420 | #if RF_DEBUG_PSS > 0 |
421 | if (rf_pssDebug) { |
422 | printf("raid%d: skipping force/block because already done, psid %ld\n" , |
423 | desc->raidPtr->raidid, |
424 | (long) asm_p->stripeID); |
425 | } |
426 | #endif |
427 | } |
428 | } else { |
429 | #if RF_DEBUG_PSS > 0 |
430 | if (rf_pssDebug) { |
431 | printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n" , |
432 | desc->raidPtr->raidid, |
433 | (long) asm_p->stripeID); |
434 | } |
435 | #endif |
436 | } |
437 | } |
438 | #if RF_ACC_TRACE > 0 |
439 | RF_ETIMER_STOP(timer); |
440 | RF_ETIMER_EVAL(timer); |
441 | tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); |
442 | #endif |
443 | if (suspended) |
444 | return (RF_TRUE); |
445 | |
446 | desc->state++; |
447 | return (RF_FALSE); |
448 | } |
449 | /* |
450 | * the following three states create, execute, and post-process dags |
451 | * the error recovery unit is a single dag. |
452 | * by default, SelectAlgorithm creates an array of dags, one per parity stripe |
453 | * in some tricky cases, multiple dags per stripe are created |
454 | * - dags within a parity stripe are executed sequentially (arbitrary order) |
455 | * - dags for distinct parity stripes are executed concurrently |
456 | * |
457 | * repeat until all dags complete successfully -or- dag selection fails |
458 | * |
459 | * while !done |
460 | * create dag(s) (SelectAlgorithm) |
461 | * if dag |
462 | * execute dag (DispatchDAG) |
463 | * if dag successful |
464 | * done (SUCCESS) |
465 | * else |
466 | * !done (RETRY - start over with new dags) |
467 | * else |
468 | * done (FAIL) |
469 | */ |
470 | int |
471 | rf_State_CreateDAG(RF_RaidAccessDesc_t *desc) |
472 | { |
473 | #if RF_ACC_TRACE > 0 |
474 | RF_AccTraceEntry_t *tracerec = &desc->tracerec; |
475 | RF_Etimer_t timer; |
476 | #endif |
477 | RF_DagHeader_t *dag_h; |
478 | RF_DagList_t *dagList; |
479 | struct buf *bp; |
480 | int i, selectStatus; |
481 | |
482 | /* generate a dag for the access, and fire it off. When the dag |
483 | * completes, we'll get re-invoked in the next state. */ |
484 | #if RF_ACC_TRACE > 0 |
485 | RF_ETIMER_START(timer); |
486 | #endif |
487 | /* SelectAlgorithm returns one or more dags */ |
488 | selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS); |
489 | #if RF_DEBUG_VALIDATE_DAG |
490 | if (rf_printDAGsDebug) { |
491 | dagList = desc->dagList; |
492 | for (i = 0; i < desc->numStripes; i++) { |
493 | rf_PrintDAGList(dagList->dags); |
494 | dagList = dagList->next; |
495 | } |
496 | } |
497 | #endif /* RF_DEBUG_VALIDATE_DAG */ |
498 | #if RF_ACC_TRACE > 0 |
499 | RF_ETIMER_STOP(timer); |
500 | RF_ETIMER_EVAL(timer); |
501 | /* update time to create all dags */ |
502 | tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer); |
503 | #endif |
504 | |
505 | desc->status = 0; /* good status */ |
506 | |
507 | if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) { |
508 | /* failed to create a dag */ |
509 | /* this happens when there are too many faults or incomplete |
510 | * dag libraries */ |
511 | if (selectStatus) { |
512 | printf("raid%d: failed to create a dag. " |
513 | "Too many component failures.\n" , |
514 | desc->raidPtr->raidid); |
515 | } else { |
516 | printf("raid%d: IO failed after %d retries.\n" , |
517 | desc->raidPtr->raidid, RF_RETRY_THRESHOLD); |
518 | } |
519 | |
520 | desc->status = 1; /* bad status */ |
521 | /* skip straight to rf_State_Cleanup() */ |
522 | desc->state = rf_CleanupState; |
523 | bp = (struct buf *)desc->bp; |
524 | bp->b_error = EIO; |
525 | bp->b_resid = bp->b_bcount; |
526 | } else { |
527 | /* bind dags to desc */ |
528 | dagList = desc->dagList; |
529 | for (i = 0; i < desc->numStripes; i++) { |
530 | dag_h = dagList->dags; |
531 | while (dag_h) { |
532 | dag_h->bp = (struct buf *) desc->bp; |
533 | #if RF_ACC_TRACE > 0 |
534 | dag_h->tracerec = tracerec; |
535 | #endif |
536 | dag_h = dag_h->next; |
537 | } |
538 | dagList = dagList->next; |
539 | } |
540 | desc->flags |= RF_DAG_DISPATCH_RETURNED; |
541 | desc->state++; /* next state should be rf_State_ExecuteDAG */ |
542 | } |
543 | return RF_FALSE; |
544 | } |
545 | |
546 | |
547 | |
548 | /* the access has an list of dagLists, one dagList per parity stripe. |
549 | * fire the first dag in each parity stripe (dagList). |
550 | * dags within a stripe (dagList) must be executed sequentially |
551 | * - this preserves atomic parity update |
552 | * dags for independents parity groups (stripes) are fired concurrently */ |
553 | |
554 | int |
555 | rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc) |
556 | { |
557 | int i; |
558 | RF_DagHeader_t *dag_h; |
559 | RF_DagList_t *dagList; |
560 | |
561 | /* next state is always rf_State_ProcessDAG important to do |
562 | * this before firing the first dag (it may finish before we |
563 | * leave this routine) */ |
564 | desc->state++; |
565 | |
566 | /* sweep dag array, a stripe at a time, firing the first dag |
567 | * in each stripe */ |
568 | dagList = desc->dagList; |
569 | for (i = 0; i < desc->numStripes; i++) { |
570 | RF_ASSERT(dagList->numDags > 0); |
571 | RF_ASSERT(dagList->numDagsDone == 0); |
572 | RF_ASSERT(dagList->numDagsFired == 0); |
573 | #if RF_ACC_TRACE > 0 |
574 | RF_ETIMER_START(dagList->tracerec.timer); |
575 | #endif |
576 | /* fire first dag in this stripe */ |
577 | dag_h = dagList->dags; |
578 | RF_ASSERT(dag_h); |
579 | dagList->numDagsFired++; |
580 | rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList); |
581 | dagList = dagList->next; |
582 | } |
583 | |
584 | /* the DAG will always call the callback, even if there was no |
585 | * blocking, so we are always suspended in this state */ |
586 | return RF_TRUE; |
587 | } |
588 | |
589 | |
590 | |
591 | /* rf_State_ProcessDAG is entered when a dag completes. |
592 | * first, check to all dags in the access have completed |
593 | * if not, fire as many dags as possible */ |
594 | |
595 | int |
596 | rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc) |
597 | { |
598 | RF_AccessStripeMapHeader_t *asmh = desc->asmap; |
599 | RF_Raid_t *raidPtr = desc->raidPtr; |
600 | RF_DagHeader_t *dag_h; |
601 | int i, j, done = RF_TRUE; |
602 | RF_DagList_t *dagList, *temp; |
603 | |
604 | /* check to see if this is the last dag */ |
605 | dagList = desc->dagList; |
606 | for (i = 0; i < desc->numStripes; i++) { |
607 | if (dagList->numDags != dagList->numDagsDone) |
608 | done = RF_FALSE; |
609 | dagList = dagList->next; |
610 | } |
611 | |
612 | if (done) { |
613 | if (desc->status) { |
614 | /* a dag failed, retry */ |
615 | /* free all dags */ |
616 | dagList = desc->dagList; |
617 | for (i = 0; i < desc->numStripes; i++) { |
618 | rf_FreeDAG(dagList->dags); |
619 | temp = dagList; |
620 | dagList = dagList->next; |
621 | rf_FreeDAGList(temp); |
622 | } |
623 | desc->dagList = NULL; |
624 | |
625 | rf_MarkFailuresInASMList(raidPtr, asmh); |
626 | |
627 | /* note the retry so that we'll bail in |
628 | rf_State_CreateDAG() once we've retired |
629 | the IO RF_RETRY_THRESHOLD times */ |
630 | |
631 | desc->numRetries++; |
632 | |
633 | /* back up to rf_State_CreateDAG */ |
634 | desc->state = desc->state - 2; |
635 | return RF_FALSE; |
636 | } else { |
637 | /* move on to rf_State_Cleanup */ |
638 | desc->state++; |
639 | } |
640 | return RF_FALSE; |
641 | } else { |
642 | /* more dags to execute */ |
643 | /* see if any are ready to be fired. if so, fire them */ |
644 | /* don't fire the initial dag in a list, it's fired in |
645 | * rf_State_ExecuteDAG */ |
646 | dagList = desc->dagList; |
647 | for (i = 0; i < desc->numStripes; i++) { |
648 | if ((dagList->numDagsDone < dagList->numDags) |
649 | && (dagList->numDagsDone == dagList->numDagsFired) |
650 | && (dagList->numDagsFired > 0)) { |
651 | #if RF_ACC_TRACE > 0 |
652 | RF_ETIMER_START(dagList->tracerec.timer); |
653 | #endif |
654 | /* fire next dag in this stripe */ |
655 | /* first, skip to next dag awaiting execution */ |
656 | dag_h = dagList->dags; |
657 | for (j = 0; j < dagList->numDagsDone; j++) |
658 | dag_h = dag_h->next; |
659 | dagList->numDagsFired++; |
660 | rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, |
661 | dagList); |
662 | } |
663 | dagList = dagList->next; |
664 | } |
665 | return RF_TRUE; |
666 | } |
667 | } |
668 | /* only make it this far if all dags complete successfully */ |
669 | int |
670 | rf_State_Cleanup(RF_RaidAccessDesc_t *desc) |
671 | { |
672 | #if RF_ACC_TRACE > 0 |
673 | RF_AccTraceEntry_t *tracerec = &desc->tracerec; |
674 | RF_Etimer_t timer; |
675 | #endif |
676 | RF_AccessStripeMapHeader_t *asmh = desc->asmap; |
677 | RF_Raid_t *raidPtr = desc->raidPtr; |
678 | RF_AccessStripeMap_t *asm_p; |
679 | RF_DagList_t *dagList; |
680 | int i; |
681 | |
682 | desc->state++; |
683 | |
684 | #if RF_ACC_TRACE > 0 |
685 | timer = tracerec->timer; |
686 | RF_ETIMER_STOP(timer); |
687 | RF_ETIMER_EVAL(timer); |
688 | tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer); |
689 | |
690 | /* the RAID I/O is complete. Clean up. */ |
691 | tracerec->specific.user.dag_retry_us = 0; |
692 | |
693 | RF_ETIMER_START(timer); |
694 | #endif |
695 | /* free all dags */ |
696 | dagList = desc->dagList; |
697 | for (i = 0; i < desc->numStripes; i++) { |
698 | rf_FreeDAG(dagList->dags); |
699 | dagList = dagList->next; |
700 | } |
701 | #if RF_ACC_TRACE > 0 |
702 | RF_ETIMER_STOP(timer); |
703 | RF_ETIMER_EVAL(timer); |
704 | tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer); |
705 | |
706 | RF_ETIMER_START(timer); |
707 | #endif |
708 | for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { |
709 | if (!rf_suppressLocksAndLargeWrites && |
710 | asm_p->parityInfo && |
711 | !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) { |
712 | RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc); |
713 | rf_ReleaseStripeLock(raidPtr->lockTable, |
714 | asm_p->stripeID, |
715 | &asm_p->lockReqDesc); |
716 | } |
717 | if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) { |
718 | rf_UnblockRecon(raidPtr, asm_p); |
719 | } |
720 | } |
721 | #if RF_ACC_TRACE > 0 |
722 | RF_ETIMER_STOP(timer); |
723 | RF_ETIMER_EVAL(timer); |
724 | tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); |
725 | |
726 | RF_ETIMER_START(timer); |
727 | #endif |
728 | rf_FreeAccessStripeMap(asmh); |
729 | #if RF_ACC_TRACE > 0 |
730 | RF_ETIMER_STOP(timer); |
731 | RF_ETIMER_EVAL(timer); |
732 | tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer); |
733 | |
734 | RF_ETIMER_STOP(desc->timer); |
735 | RF_ETIMER_EVAL(desc->timer); |
736 | |
737 | timer = desc->tracerec.tot_timer; |
738 | RF_ETIMER_STOP(timer); |
739 | RF_ETIMER_EVAL(timer); |
740 | desc->tracerec.total_us = RF_ETIMER_VAL_US(timer); |
741 | |
742 | rf_LogTraceRec(raidPtr, tracerec); |
743 | #endif |
744 | desc->flags |= RF_DAG_ACCESS_COMPLETE; |
745 | |
746 | return RF_FALSE; |
747 | } |
748 | |