1 | /* |
2 | * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting |
3 | * Copyright (c) 2002-2008 Atheros Communications, Inc. |
4 | * |
5 | * Permission to use, copy, modify, and/or distribute this software for any |
6 | * purpose with or without fee is hereby granted, provided that the above |
7 | * copyright notice and this permission notice appear in all copies. |
8 | * |
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
16 | * |
17 | * $Id: ar2425.c,v 1.4 2013/09/12 12:05:52 martin Exp $ |
18 | */ |
19 | #include "opt_ah.h" |
20 | |
21 | #include "ah.h" |
22 | #include "ah_internal.h" |
23 | |
24 | #include "ar5212/ar5212.h" |
25 | #include "ar5212/ar5212reg.h" |
26 | #include "ar5212/ar5212phy.h" |
27 | |
28 | #include "ah_eeprom_v3.h" |
29 | |
30 | #define AH_5212_2425 |
31 | #define AH_5212_2417 |
32 | #include "ar5212/ar5212.ini" |
33 | |
34 | #define N(a) (sizeof(a)/sizeof(a[0])) |
35 | |
36 | struct ar2425State { |
37 | RF_HAL_FUNCS base; /* public state, must be first */ |
38 | uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; |
39 | |
40 | uint32_t Bank1Data[N(ar5212Bank1_2425)]; |
41 | uint32_t Bank2Data[N(ar5212Bank2_2425)]; |
42 | uint32_t Bank3Data[N(ar5212Bank3_2425)]; |
43 | uint32_t Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */ |
44 | uint32_t Bank7Data[N(ar5212Bank7_2425)]; |
45 | }; |
46 | #define AR2425(ah) ((struct ar2425State *) AH5212(ah)->ah_rfHal) |
47 | |
48 | extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, |
49 | uint32_t numBits, uint32_t firstBit, uint32_t column); |
50 | |
51 | static void |
52 | ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, |
53 | int writes) |
54 | { |
55 | HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes); |
56 | HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes); |
57 | HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes); |
58 | #if 0 |
59 | /* |
60 | * for SWAN similar to Condor |
61 | * Bit 0 enables link to go to L1 when MAC goes to sleep. |
62 | * Bit 3 enables the loop back the link down to reset. |
63 | */ |
64 | if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) { |
65 | OS_REG_WRITE(ah, AR_PCIE_PMC, |
66 | AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET); |
67 | } |
68 | /* |
69 | * for Standby issue in Swan/Condor. |
70 | * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips |
71 | * before last Training Sequence 2 (TS2) |
72 | * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert |
73 | * Power Reset along with PCI Reset |
74 | */ |
75 | OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2); |
76 | #endif |
77 | } |
78 | |
79 | /* |
80 | * Take the MHz channel value and set the Channel value |
81 | * |
82 | * ASSUMES: Writes enabled to analog bus |
83 | */ |
84 | static HAL_BOOL |
85 | ar2425SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) |
86 | { |
87 | uint32_t channelSel = 0; |
88 | uint32_t bModeSynth = 0; |
89 | uint32_t aModeRefSel = 0; |
90 | uint32_t reg32 = 0; |
91 | uint16_t freq; |
92 | |
93 | OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); |
94 | |
95 | if (chan->channel < 4800) { |
96 | uint32_t txctl; |
97 | |
98 | channelSel = chan->channel - 2272; |
99 | channelSel = ath_hal_reverseBits(channelSel, 8); |
100 | |
101 | txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); |
102 | if (chan->channel == 2484) { |
103 | // Enable channel spreading for channel 14 |
104 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
105 | txctl | AR_PHY_CCK_TX_CTRL_JAPAN); |
106 | } else { |
107 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
108 | txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); |
109 | } |
110 | |
111 | } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) { |
112 | freq = chan->channel - 2; /* Align to even 5MHz raster */ |
113 | channelSel = ath_hal_reverseBits( |
114 | (uint32_t)(((freq - 4800)*10)/25 + 1), 8); |
115 | aModeRefSel = ath_hal_reverseBits(0, 2); |
116 | } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { |
117 | channelSel = ath_hal_reverseBits( |
118 | ((chan->channel - 4800) / 20 << 2), 8); |
119 | aModeRefSel = ath_hal_reverseBits(1, 2); |
120 | } else if ((chan->channel % 10) == 0) { |
121 | channelSel = ath_hal_reverseBits( |
122 | ((chan->channel - 4800) / 10 << 1), 8); |
123 | aModeRefSel = ath_hal_reverseBits(1, 2); |
124 | } else if ((chan->channel % 5) == 0) { |
125 | channelSel = ath_hal_reverseBits( |
126 | (chan->channel - 4800) / 5, 8); |
127 | aModeRefSel = ath_hal_reverseBits(1, 2); |
128 | } else { |
129 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n" , |
130 | __func__, chan->channel); |
131 | return AH_FALSE; |
132 | } |
133 | |
134 | reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | |
135 | (1 << 12) | 0x1; |
136 | OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); |
137 | |
138 | reg32 >>= 8; |
139 | OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); |
140 | |
141 | AH_PRIVATE(ah)->ah_curchan = chan; |
142 | return AH_TRUE; |
143 | } |
144 | |
145 | /* |
146 | * Reads EEPROM header info from device structure and programs |
147 | * all rf registers |
148 | * |
149 | * REQUIRES: Access to the analog rf device |
150 | */ |
151 | static HAL_BOOL |
152 | ar2425SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain) |
153 | { |
154 | #define RF_BANK_SETUP(_priv, _ix, _col) do { \ |
155 | int i; \ |
156 | for (i = 0; i < N(ar5212Bank##_ix##_2425); i++) \ |
157 | (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\ |
158 | } while (0) |
159 | struct ath_hal_5212 *ahp = AH5212(ah); |
160 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
161 | struct ar2425State *priv = AR2425(ah); |
162 | uint16_t ob2GHz = 0, db2GHz = 0; |
163 | int regWrites = 0; |
164 | |
165 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, |
166 | "==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n" , |
167 | __func__, chan->channel, chan->channelFlags, modesIndex); |
168 | |
169 | HALASSERT(priv); |
170 | |
171 | /* Setup rf parameters */ |
172 | switch (chan->channelFlags & CHANNEL_ALL) { |
173 | case CHANNEL_B: |
174 | ob2GHz = ee->ee_obFor24; |
175 | db2GHz = ee->ee_dbFor24; |
176 | break; |
177 | case CHANNEL_G: |
178 | case CHANNEL_108G: |
179 | ob2GHz = ee->ee_obFor24g; |
180 | db2GHz = ee->ee_dbFor24g; |
181 | break; |
182 | default: |
183 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n" , |
184 | __func__, chan->channelFlags); |
185 | return AH_FALSE; |
186 | } |
187 | |
188 | /* Bank 1 Write */ |
189 | RF_BANK_SETUP(priv, 1, 1); |
190 | |
191 | /* Bank 2 Write */ |
192 | RF_BANK_SETUP(priv, 2, modesIndex); |
193 | |
194 | /* Bank 3 Write */ |
195 | RF_BANK_SETUP(priv, 3, modesIndex); |
196 | |
197 | /* Bank 6 Write */ |
198 | RF_BANK_SETUP(priv, 6, modesIndex); |
199 | |
200 | ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0); |
201 | ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0); |
202 | |
203 | /* Bank 7 Setup */ |
204 | RF_BANK_SETUP(priv, 7, modesIndex); |
205 | |
206 | /* Write Analog registers */ |
207 | HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites); |
208 | HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites); |
209 | HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites); |
210 | if (IS_2417(ah)) { |
211 | HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417)); |
212 | HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data, |
213 | regWrites); |
214 | } else |
215 | HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data, |
216 | regWrites); |
217 | HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites); |
218 | |
219 | /* Now that we have reprogrammed rfgain value, clear the flag. */ |
220 | ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; |
221 | |
222 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n" , __func__); |
223 | return AH_TRUE; |
224 | #undef RF_BANK_SETUP |
225 | } |
226 | |
227 | /* |
228 | * Return a reference to the requested RF Bank. |
229 | */ |
230 | static uint32_t * |
231 | ar2425GetRfBank(struct ath_hal *ah, int bank) |
232 | { |
233 | struct ar2425State *priv = AR2425(ah); |
234 | |
235 | HALASSERT(priv != AH_NULL); |
236 | switch (bank) { |
237 | case 1: return priv->Bank1Data; |
238 | case 2: return priv->Bank2Data; |
239 | case 3: return priv->Bank3Data; |
240 | case 6: return priv->Bank6Data; |
241 | case 7: return priv->Bank7Data; |
242 | } |
243 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n" , |
244 | __func__, bank); |
245 | return AH_NULL; |
246 | } |
247 | |
248 | /* |
249 | * Return indices surrounding the value in sorted integer lists. |
250 | * |
251 | * NB: the input list is assumed to be sorted in ascending order |
252 | */ |
253 | static void |
254 | GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, |
255 | uint32_t *vlo, uint32_t *vhi) |
256 | { |
257 | int16_t target = v; |
258 | const uint16_t *ep = lp+listSize; |
259 | const uint16_t *tp; |
260 | |
261 | /* |
262 | * Check first and last elements for out-of-bounds conditions. |
263 | */ |
264 | if (target < lp[0]) { |
265 | *vlo = *vhi = 0; |
266 | return; |
267 | } |
268 | if (target >= ep[-1]) { |
269 | *vlo = *vhi = listSize - 1; |
270 | return; |
271 | } |
272 | |
273 | /* look for value being near or between 2 values in list */ |
274 | for (tp = lp; tp < ep; tp++) { |
275 | /* |
276 | * If value is close to the current value of the list |
277 | * then target is not between values, it is one of the values |
278 | */ |
279 | if (*tp == target) { |
280 | *vlo = *vhi = tp - (const uint16_t *) lp; |
281 | return; |
282 | } |
283 | /* |
284 | * Look for value being between current value and next value |
285 | * if so return these 2 values |
286 | */ |
287 | if (target < tp[1]) { |
288 | *vlo = tp - (const uint16_t *) lp; |
289 | *vhi = *vlo + 1; |
290 | return; |
291 | } |
292 | } |
293 | } |
294 | |
295 | /* |
296 | * Fill the Vpdlist for indices Pmax-Pmin |
297 | */ |
298 | static HAL_BOOL |
299 | ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, |
300 | const int16_t *pwrList, const uint16_t *VpdList, |
301 | uint16_t numIntercepts, |
302 | uint16_t retVpdList[][64]) |
303 | { |
304 | uint16_t ii, kk; |
305 | int16_t currPwr = (int16_t)(2*Pmin); |
306 | /* since Pmin is pwr*2 and pwrList is 4*pwr */ |
307 | uint32_t idxL = 0, idxR = 0; |
308 | |
309 | ii = 0; |
310 | |
311 | if (numIntercepts < 2) |
312 | return AH_FALSE; |
313 | |
314 | while (ii <= (uint16_t)(Pmax - Pmin)) { |
315 | GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, |
316 | numIntercepts, &(idxL), &(idxR)); |
317 | if (idxR < 1) |
318 | idxR = 1; /* extrapolate below */ |
319 | if (idxL == (uint32_t)(numIntercepts - 1)) |
320 | idxL = numIntercepts - 2; /* extrapolate above */ |
321 | if (pwrList[idxL] == pwrList[idxR]) |
322 | kk = VpdList[idxL]; |
323 | else |
324 | kk = (uint16_t) |
325 | (((currPwr - pwrList[idxL])*VpdList[idxR]+ |
326 | (pwrList[idxR] - currPwr)*VpdList[idxL])/ |
327 | (pwrList[idxR] - pwrList[idxL])); |
328 | retVpdList[pdGainIdx][ii] = kk; |
329 | ii++; |
330 | currPwr += 2; /* half dB steps */ |
331 | } |
332 | |
333 | return AH_TRUE; |
334 | } |
335 | |
336 | /* |
337 | * Returns interpolated or the scaled up interpolated value |
338 | */ |
339 | static int16_t |
340 | interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, |
341 | int16_t targetLeft, int16_t targetRight) |
342 | { |
343 | int16_t rv; |
344 | |
345 | if (srcRight != srcLeft) { |
346 | rv = ((target - srcLeft)*targetRight + |
347 | (srcRight - target)*targetLeft) / (srcRight - srcLeft); |
348 | } else { |
349 | rv = targetLeft; |
350 | } |
351 | return rv; |
352 | } |
353 | |
354 | /* |
355 | * Uses the data points read from EEPROM to reconstruct the pdadc power table |
356 | * Called by ar2425SetPowerTable() |
357 | */ |
358 | static void |
359 | ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, |
360 | const RAW_DATA_STRUCT_2413 *pRawDataset, |
361 | uint16_t pdGainOverlap_t2, |
362 | int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], |
363 | uint16_t pPdGainValues[], uint16_t pPDADCValues[]) |
364 | { |
365 | /* Note the items statically allocated below are to reduce stack usage */ |
366 | uint32_t ii, jj, kk; |
367 | int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ |
368 | uint32_t idxL = 0, idxR = 0; |
369 | uint32_t numPdGainsUsed = 0; |
370 | static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB]; |
371 | /* filled out Vpd table for all pdGains (chanL) */ |
372 | static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB]; |
373 | /* filled out Vpd table for all pdGains (chanR) */ |
374 | static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB]; |
375 | /* filled out Vpd table for all pdGains (interpolated) */ |
376 | /* |
377 | * If desired to support -ve power levels in future, just |
378 | * change pwr_I_0 to signed 5-bits. |
379 | */ |
380 | static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
381 | /* to accomodate -ve power levels later on. */ |
382 | static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
383 | /* to accomodate -ve power levels later on */ |
384 | uint16_t numVpd = 0; |
385 | uint16_t Vpd_step; |
386 | int16_t tmpVal ; |
387 | uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; |
388 | |
389 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n" , __func__); |
390 | |
391 | /* Get upper lower index */ |
392 | GetLowerUpperIndex(channel, pRawDataset->pChannels, |
393 | pRawDataset->numChannels, &(idxL), &(idxR)); |
394 | |
395 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
396 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
397 | /* work backwards 'cause highest pdGain for lowest power */ |
398 | numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; |
399 | if (numVpd > 0) { |
400 | pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; |
401 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; |
402 | if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { |
403 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; |
404 | } |
405 | Pmin_t2[numPdGainsUsed] = (int16_t) |
406 | (Pmin_t2[numPdGainsUsed] / 2); |
407 | Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
408 | if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) |
409 | Pmax_t2[numPdGainsUsed] = |
410 | pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
411 | Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); |
412 | ar2425FillVpdTable( |
413 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
414 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), |
415 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L |
416 | ); |
417 | ar2425FillVpdTable( |
418 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
419 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), |
420 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R |
421 | ); |
422 | for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { |
423 | VpdTable_I[numPdGainsUsed][kk] = |
424 | interpolate_signed( |
425 | channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], |
426 | (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); |
427 | } |
428 | /* fill VpdTable_I for this pdGain */ |
429 | numPdGainsUsed++; |
430 | } |
431 | /* if this pdGain is used */ |
432 | } |
433 | |
434 | *pMinCalPower = Pmin_t2[0]; |
435 | kk = 0; /* index for the final table */ |
436 | for (ii = 0; ii < numPdGainsUsed; ii++) { |
437 | if (ii == (numPdGainsUsed - 1)) |
438 | pPdGainBoundaries[ii] = Pmax_t2[ii] + |
439 | PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; |
440 | else |
441 | pPdGainBoundaries[ii] = (uint16_t) |
442 | ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); |
443 | |
444 | /* Find starting index for this pdGain */ |
445 | if (ii == 0) |
446 | ss = 0; /* for the first pdGain, start from index 0 */ |
447 | else |
448 | ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - |
449 | pdGainOverlap_t2; |
450 | Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); |
451 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
452 | /* |
453 | *-ve ss indicates need to extrapolate data below for this pdGain |
454 | */ |
455 | while (ss < 0) { |
456 | tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); |
457 | pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); |
458 | ss++; |
459 | } |
460 | |
461 | sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; |
462 | tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; |
463 | maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; |
464 | |
465 | while (ss < (int16_t)maxIndex) |
466 | pPDADCValues[kk++] = VpdTable_I[ii][ss++]; |
467 | |
468 | Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - |
469 | VpdTable_I[ii][sizeCurrVpdTable-2]); |
470 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
471 | /* |
472 | * for last gain, pdGainBoundary == Pmax_t2, so will |
473 | * have to extrapolate |
474 | */ |
475 | if (tgtIndex > maxIndex) { /* need to extrapolate above */ |
476 | while(ss < (int16_t)tgtIndex) { |
477 | tmpVal = (uint16_t) |
478 | (VpdTable_I[ii][sizeCurrVpdTable-1] + |
479 | (ss-maxIndex)*Vpd_step); |
480 | pPDADCValues[kk++] = (tmpVal > 127) ? |
481 | 127 : tmpVal; |
482 | ss++; |
483 | } |
484 | } /* extrapolated above */ |
485 | } /* for all pdGainUsed */ |
486 | |
487 | while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { |
488 | pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; |
489 | ii++; |
490 | } |
491 | while (kk < 128) { |
492 | pPDADCValues[kk] = pPDADCValues[kk-1]; |
493 | kk++; |
494 | } |
495 | |
496 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n" , __func__); |
497 | } |
498 | |
499 | |
500 | /* Same as 2413 set power table */ |
501 | static HAL_BOOL |
502 | ar2425SetPowerTable(struct ath_hal *ah, |
503 | int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, |
504 | uint16_t *rfXpdGain) |
505 | { |
506 | struct ath_hal_5212 *ahp = AH5212(ah); |
507 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
508 | const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; |
509 | uint16_t pdGainOverlap_t2; |
510 | int16_t minCalPower2413_t2; |
511 | uint16_t *pdadcValues = ahp->ah_pcdacTable; |
512 | uint16_t gainBoundaries[4]; |
513 | uint32_t i, reg32, regoffset; |
514 | |
515 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n" , |
516 | __func__, chan->channel,chan->channelFlags); |
517 | |
518 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
519 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
520 | else if (IS_CHAN_B(chan)) |
521 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
522 | else { |
523 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n" , __func__); |
524 | return AH_FALSE; |
525 | } |
526 | |
527 | pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), |
528 | AR_PHY_TPCRG5_PD_GAIN_OVERLAP); |
529 | |
530 | ar2425getGainBoundariesAndPdadcsForPowers(ah, chan->channel, |
531 | pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries, |
532 | rfXpdGain, pdadcValues); |
533 | |
534 | OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
535 | (pRawDataset->pDataPerChannel[0].numPdGains - 1)); |
536 | |
537 | /* |
538 | * Note the pdadc table may not start at 0 dBm power, could be |
539 | * negative or greater than 0. Need to offset the power |
540 | * values by the amount of minPower for griffin |
541 | */ |
542 | if (minCalPower2413_t2 != 0) |
543 | ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2); |
544 | else |
545 | ahp->ah_txPowerIndexOffset = 0; |
546 | |
547 | /* Finally, write the power values into the baseband power table */ |
548 | regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ |
549 | for (i = 0; i < 32; i++) { |
550 | reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | |
551 | ((pdadcValues[4*i + 1] & 0xFF) << 8) | |
552 | ((pdadcValues[4*i + 2] & 0xFF) << 16) | |
553 | ((pdadcValues[4*i + 3] & 0xFF) << 24) ; |
554 | OS_REG_WRITE(ah, regoffset, reg32); |
555 | regoffset += 4; |
556 | } |
557 | |
558 | OS_REG_WRITE(ah, AR_PHY_TPCRG5, |
559 | SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
560 | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
561 | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
562 | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
563 | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
564 | |
565 | return AH_TRUE; |
566 | } |
567 | |
568 | static int16_t |
569 | ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) |
570 | { |
571 | uint32_t ii,jj; |
572 | uint16_t Pmin=0,numVpd; |
573 | |
574 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
575 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
576 | /* work backwards 'cause highest pdGain for lowest power */ |
577 | numVpd = data->pDataPerPDGain[jj].numVpd; |
578 | if (numVpd > 0) { |
579 | Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; |
580 | return(Pmin); |
581 | } |
582 | } |
583 | return(Pmin); |
584 | } |
585 | |
586 | static int16_t |
587 | ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) |
588 | { |
589 | uint32_t ii; |
590 | uint16_t Pmax=0,numVpd; |
591 | |
592 | for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
593 | /* work forwards cuase lowest pdGain for highest power */ |
594 | numVpd = data->pDataPerPDGain[ii].numVpd; |
595 | if (numVpd > 0) { |
596 | Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; |
597 | return(Pmax); |
598 | } |
599 | } |
600 | return(Pmax); |
601 | } |
602 | |
603 | static |
604 | HAL_BOOL |
605 | ar2425GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, |
606 | int16_t *maxPow, int16_t *minPow) |
607 | { |
608 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
609 | const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; |
610 | const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL; |
611 | uint16_t numChannels; |
612 | int totalD,totalF, totalMin,last, i; |
613 | |
614 | *maxPow = 0; |
615 | |
616 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
617 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
618 | else if (IS_CHAN_B(chan)) |
619 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
620 | else |
621 | return(AH_FALSE); |
622 | |
623 | numChannels = pRawDataset->numChannels; |
624 | data = pRawDataset->pDataPerChannel; |
625 | |
626 | /* Make sure the channel is in the range of the TP values |
627 | * (freq piers) |
628 | */ |
629 | if (numChannels < 1) |
630 | return(AH_FALSE); |
631 | |
632 | if ((chan->channel < data[0].channelValue) || |
633 | (chan->channel > data[numChannels-1].channelValue)) { |
634 | if (chan->channel < data[0].channelValue) { |
635 | *maxPow = ar2425GetMaxPower(ah, &data[0]); |
636 | *minPow = ar2425GetMinPower(ah, &data[0]); |
637 | return(AH_TRUE); |
638 | } else { |
639 | *maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]); |
640 | *minPow = ar2425GetMinPower(ah, &data[numChannels - 1]); |
641 | return(AH_TRUE); |
642 | } |
643 | } |
644 | |
645 | /* Linearly interpolate the power value now */ |
646 | for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); |
647 | last = i++); |
648 | totalD = data[i].channelValue - data[last].channelValue; |
649 | if (totalD > 0) { |
650 | totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]); |
651 | *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + |
652 | ar2425GetMaxPower(ah, &data[last])*totalD)/totalD); |
653 | totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]); |
654 | *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + |
655 | ar2425GetMinPower(ah, &data[last])*totalD)/totalD); |
656 | return(AH_TRUE); |
657 | } else { |
658 | if (chan->channel == data[i].channelValue) { |
659 | *maxPow = ar2425GetMaxPower(ah, &data[i]); |
660 | *minPow = ar2425GetMinPower(ah, &data[i]); |
661 | return(AH_TRUE); |
662 | } else |
663 | return(AH_FALSE); |
664 | } |
665 | } |
666 | |
667 | /* |
668 | * Free memory for analog bank scratch buffers |
669 | */ |
670 | static void |
671 | ar2425RfDetach(struct ath_hal *ah) |
672 | { |
673 | struct ath_hal_5212 *ahp = AH5212(ah); |
674 | |
675 | HALASSERT(ahp->ah_rfHal != AH_NULL); |
676 | ath_hal_free(ahp->ah_rfHal); |
677 | ahp->ah_rfHal = AH_NULL; |
678 | } |
679 | |
680 | /* |
681 | * Allocate memory for analog bank scratch buffers |
682 | * Scratch Buffer will be reinitialized every reset so no need to zero now |
683 | */ |
684 | static HAL_BOOL |
685 | ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status) |
686 | { |
687 | struct ath_hal_5212 *ahp = AH5212(ah); |
688 | struct ar2425State *priv; |
689 | |
690 | HALASSERT(ah->ah_magic == AR5212_MAGIC); |
691 | |
692 | HALASSERT(ahp->ah_rfHal == AH_NULL); |
693 | priv = ath_hal_malloc(sizeof(struct ar2425State)); |
694 | if (priv == AH_NULL) { |
695 | HALDEBUG(ah, HAL_DEBUG_ANY, |
696 | "%s: cannot allocate private state\n" , __func__); |
697 | *status = HAL_ENOMEM; /* XXX */ |
698 | return AH_FALSE; |
699 | } |
700 | priv->base.rfDetach = ar2425RfDetach; |
701 | priv->base.writeRegs = ar2425WriteRegs; |
702 | priv->base.getRfBank = ar2425GetRfBank; |
703 | priv->base.setChannel = ar2425SetChannel; |
704 | priv->base.setRfRegs = ar2425SetRfRegs; |
705 | priv->base.setPowerTable = ar2425SetPowerTable; |
706 | priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower; |
707 | priv->base.getNfAdjust = ar5212GetNfAdjust; |
708 | |
709 | ahp->ah_pcdacTable = priv->pcdacTable; |
710 | ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); |
711 | ahp->ah_rfHal = &priv->base; |
712 | |
713 | return AH_TRUE; |
714 | } |
715 | |
716 | static HAL_BOOL |
717 | ar2425Probe(struct ath_hal *ah) |
718 | { |
719 | return IS_2425(ah) || IS_2417(ah); |
720 | } |
721 | AH_RF(RF2425, ar2425Probe, ar2425RfAttach); |
722 | |