1 | /* $NetBSD: if_fwip.c,v 1.27 2016/06/10 13:27:14 ozaki-r Exp $ */ |
2 | /*- |
3 | * Copyright (c) 2004 |
4 | * Doug Rabson |
5 | * Copyright (c) 2002-2003 |
6 | * Hidetoshi Shimokawa. All rights reserved. |
7 | * |
8 | * Redistribution and use in source and binary forms, with or without |
9 | * modification, are permitted provided that the following conditions |
10 | * are met: |
11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * 2. Redistributions in binary form must reproduce the above copyright |
14 | * notice, this list of conditions and the following disclaimer in the |
15 | * documentation and/or other materials provided with the distribution. |
16 | * 3. All advertising materials mentioning features or use of this software |
17 | * must display the following acknowledgement: |
18 | * |
19 | * This product includes software developed by Hidetoshi Shimokawa. |
20 | * |
21 | * 4. Neither the name of the author nor the names of its contributors |
22 | * may be used to endorse or promote products derived from this software |
23 | * without specific prior written permission. |
24 | * |
25 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
26 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
27 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
28 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
29 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
30 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
31 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
32 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
33 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
34 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
35 | * SUCH DAMAGE. |
36 | * |
37 | * $FreeBSD: src/sys/dev/firewire/if_fwip.c,v 1.18 2009/02/09 16:58:18 fjoe Exp $ |
38 | */ |
39 | |
40 | #include <sys/cdefs.h> |
41 | __KERNEL_RCSID(0, "$NetBSD: if_fwip.c,v 1.27 2016/06/10 13:27:14 ozaki-r Exp $" ); |
42 | |
43 | #include <sys/param.h> |
44 | #include <sys/bus.h> |
45 | #include <sys/device.h> |
46 | #include <sys/errno.h> |
47 | #include <sys/malloc.h> |
48 | #include <sys/mbuf.h> |
49 | #include <sys/mutex.h> |
50 | #include <sys/sysctl.h> |
51 | |
52 | #include <net/bpf.h> |
53 | #include <net/if.h> |
54 | #include <net/if_ieee1394.h> |
55 | #include <net/if_types.h> |
56 | |
57 | #include <dev/ieee1394/firewire.h> |
58 | #include <dev/ieee1394/firewirereg.h> |
59 | #include <dev/ieee1394/iec13213.h> |
60 | #include <dev/ieee1394/if_fwipvar.h> |
61 | |
62 | /* |
63 | * We really need a mechanism for allocating regions in the FIFO |
64 | * address space. We pick a address in the OHCI controller's 'middle' |
65 | * address space. This means that the controller will automatically |
66 | * send responses for us, which is fine since we don't have any |
67 | * important information to put in the response anyway. |
68 | */ |
69 | #define INET_FIFO 0xfffe00000000LL |
70 | |
71 | #define FWIPDEBUG if (fwipdebug) aprint_debug_ifnet |
72 | #define TX_MAX_QUEUE (FWMAXQUEUE - 1) |
73 | |
74 | |
75 | struct fw_hwaddr { |
76 | uint32_t sender_unique_ID_hi; |
77 | uint32_t sender_unique_ID_lo; |
78 | uint8_t sender_max_rec; |
79 | uint8_t sspd; |
80 | uint16_t sender_unicast_FIFO_hi; |
81 | uint32_t sender_unicast_FIFO_lo; |
82 | }; |
83 | |
84 | |
85 | static int fwipmatch(device_t, cfdata_t, void *); |
86 | static void fwipattach(device_t, device_t, void *); |
87 | static int fwipdetach(device_t, int); |
88 | static int fwipactivate(device_t, enum devact); |
89 | |
90 | /* network interface */ |
91 | static void fwip_start(struct ifnet *); |
92 | static int fwip_ioctl(struct ifnet *, u_long, void *); |
93 | static int fwip_init(struct ifnet *); |
94 | static void fwip_stop(struct ifnet *, int); |
95 | |
96 | static void fwip_post_busreset(void *); |
97 | static void fwip_output_callback(struct fw_xfer *); |
98 | static void fwip_async_output(struct fwip_softc *, struct ifnet *); |
99 | static void fwip_stream_input(struct fw_xferq *); |
100 | static void fwip_unicast_input(struct fw_xfer *); |
101 | |
102 | static int fwipdebug = 0; |
103 | static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */ |
104 | static int tx_speed = 2; |
105 | static int rx_queue_len = FWMAXQUEUE; |
106 | |
107 | /* |
108 | * Setup sysctl(3) MIB, hw.fwip.* |
109 | * |
110 | * TBD condition CTLFLAG_PERMANENT on being a module or not |
111 | */ |
112 | SYSCTL_SETUP(sysctl_fwip, "sysctl fwip(4) subtree setup" ) |
113 | { |
114 | int rc, fwip_node_num; |
115 | const struct sysctlnode *node; |
116 | |
117 | if ((rc = sysctl_createv(clog, 0, NULL, &node, |
118 | CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwip" , |
119 | SYSCTL_DESCR("fwip controls" ), |
120 | NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { |
121 | goto err; |
122 | } |
123 | fwip_node_num = node->sysctl_num; |
124 | |
125 | /* fwip RX queue length */ |
126 | if ((rc = sysctl_createv(clog, 0, NULL, &node, |
127 | CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, |
128 | "rx_queue_len" , SYSCTL_DESCR("Length of the receive queue" ), |
129 | NULL, 0, &rx_queue_len, |
130 | 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) { |
131 | goto err; |
132 | } |
133 | |
134 | /* fwip RX queue length */ |
135 | if ((rc = sysctl_createv(clog, 0, NULL, &node, |
136 | CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, |
137 | "if_fwip_debug" , SYSCTL_DESCR("fwip driver debug flag" ), |
138 | NULL, 0, &fwipdebug, |
139 | 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) { |
140 | goto err; |
141 | } |
142 | |
143 | return; |
144 | |
145 | err: |
146 | aprint_error("%s: sysctl_createv failed (rc = %d)\n" , __func__, rc); |
147 | } |
148 | |
149 | |
150 | CFATTACH_DECL_NEW(fwip, sizeof(struct fwip_softc), |
151 | fwipmatch, fwipattach, fwipdetach, fwipactivate); |
152 | |
153 | |
154 | static int |
155 | fwipmatch(device_t parent, cfdata_t cf, void *aux) |
156 | { |
157 | struct fw_attach_args *fwa = aux; |
158 | |
159 | if (strcmp(fwa->name, "fwip" ) == 0) |
160 | return 1; |
161 | return 0; |
162 | } |
163 | |
164 | static void |
165 | fwipattach(device_t parent, device_t self, void *aux) |
166 | { |
167 | struct fwip_softc *sc = device_private(self); |
168 | struct fw_attach_args *fwa = (struct fw_attach_args *)aux; |
169 | struct fw_hwaddr *hwaddr; |
170 | struct ifnet *ifp; |
171 | |
172 | aprint_naive("\n" ); |
173 | aprint_normal(": IP over IEEE1394\n" ); |
174 | |
175 | sc->sc_fd.dev = self; |
176 | sc->sc_eth.fwip_ifp = &sc->sc_eth.fwcom.fc_if; |
177 | hwaddr = (struct fw_hwaddr *)&sc->sc_eth.fwcom.ic_hwaddr; |
178 | |
179 | ifp = sc->sc_eth.fwip_ifp; |
180 | |
181 | mutex_init(&sc->sc_fwb.fwb_mtx, MUTEX_DEFAULT, IPL_NET); |
182 | mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET); |
183 | |
184 | /* XXX */ |
185 | sc->sc_dma_ch = -1; |
186 | |
187 | sc->sc_fd.fc = fwa->fc; |
188 | if (tx_speed < 0) |
189 | tx_speed = sc->sc_fd.fc->speed; |
190 | |
191 | sc->sc_fd.post_explore = NULL; |
192 | sc->sc_fd.post_busreset = fwip_post_busreset; |
193 | sc->sc_eth.fwip = sc; |
194 | |
195 | /* |
196 | * Encode our hardware the way that arp likes it. |
197 | */ |
198 | hwaddr->sender_unique_ID_hi = htonl(sc->sc_fd.fc->eui.hi); |
199 | hwaddr->sender_unique_ID_lo = htonl(sc->sc_fd.fc->eui.lo); |
200 | hwaddr->sender_max_rec = sc->sc_fd.fc->maxrec; |
201 | hwaddr->sspd = sc->sc_fd.fc->speed; |
202 | hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32)); |
203 | hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO); |
204 | |
205 | /* fill the rest and attach interface */ |
206 | ifp->if_softc = &sc->sc_eth; |
207 | |
208 | strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); |
209 | ifp->if_start = fwip_start; |
210 | ifp->if_ioctl = fwip_ioctl; |
211 | ifp->if_init = fwip_init; |
212 | ifp->if_stop = fwip_stop; |
213 | ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST); |
214 | IFQ_SET_READY(&ifp->if_snd); |
215 | IFQ_SET_MAXLEN(&ifp->if_snd, TX_MAX_QUEUE); |
216 | |
217 | if_attach(ifp); |
218 | ieee1394_ifattach(ifp, (const struct ieee1394_hwaddr *)hwaddr); |
219 | |
220 | if (!pmf_device_register(self, NULL, NULL)) |
221 | aprint_error_dev(self, "couldn't establish power handler\n" ); |
222 | else |
223 | pmf_class_network_register(self, ifp); |
224 | |
225 | FWIPDEBUG(ifp, "interface created\n" ); |
226 | return; |
227 | } |
228 | |
229 | static int |
230 | fwipdetach(device_t self, int flags) |
231 | { |
232 | struct fwip_softc *sc = device_private(self); |
233 | struct ifnet *ifp = sc->sc_eth.fwip_ifp; |
234 | |
235 | fwip_stop(sc->sc_eth.fwip_ifp, 1); |
236 | ieee1394_ifdetach(ifp); |
237 | if_detach(ifp); |
238 | mutex_destroy(&sc->sc_mtx); |
239 | mutex_destroy(&sc->sc_fwb.fwb_mtx); |
240 | return 0; |
241 | } |
242 | |
243 | static int |
244 | fwipactivate(device_t self, enum devact act) |
245 | { |
246 | struct fwip_softc *sc = device_private(self); |
247 | |
248 | switch (act) { |
249 | case DVACT_DEACTIVATE: |
250 | if_deactivate(sc->sc_eth.fwip_ifp); |
251 | return 0; |
252 | default: |
253 | return EOPNOTSUPP; |
254 | } |
255 | } |
256 | |
257 | static void |
258 | fwip_start(struct ifnet *ifp) |
259 | { |
260 | struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; |
261 | |
262 | FWIPDEBUG(ifp, "starting\n" ); |
263 | |
264 | if (sc->sc_dma_ch < 0) { |
265 | struct mbuf *m = NULL; |
266 | |
267 | FWIPDEBUG(ifp, "not ready\n" ); |
268 | |
269 | do { |
270 | IF_DEQUEUE(&ifp->if_snd, m); |
271 | if (m != NULL) |
272 | m_freem(m); |
273 | ifp->if_oerrors++; |
274 | } while (m != NULL); |
275 | |
276 | return; |
277 | } |
278 | |
279 | ifp->if_flags |= IFF_OACTIVE; |
280 | |
281 | if (ifp->if_snd.ifq_len != 0) |
282 | fwip_async_output(sc, ifp); |
283 | |
284 | ifp->if_flags &= ~IFF_OACTIVE; |
285 | } |
286 | |
287 | static int |
288 | fwip_ioctl(struct ifnet *ifp, u_long cmd, void *data) |
289 | { |
290 | int s, error = 0; |
291 | |
292 | s = splnet(); |
293 | |
294 | switch (cmd) { |
295 | case SIOCSIFFLAGS: |
296 | if ((error = ifioctl_common(ifp, cmd, data)) != 0) |
297 | break; |
298 | switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { |
299 | case IFF_RUNNING: |
300 | fwip_stop(ifp, 0); |
301 | break; |
302 | case IFF_UP: |
303 | fwip_init(ifp); |
304 | break; |
305 | default: |
306 | break; |
307 | } |
308 | break; |
309 | |
310 | case SIOCADDMULTI: |
311 | case SIOCDELMULTI: |
312 | break; |
313 | |
314 | default: |
315 | error = ieee1394_ioctl(ifp, cmd, data); |
316 | if (error == ENETRESET) |
317 | error = 0; |
318 | break; |
319 | } |
320 | |
321 | splx(s); |
322 | |
323 | return error; |
324 | } |
325 | |
326 | static int |
327 | fwip_init(struct ifnet *ifp) |
328 | { |
329 | struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; |
330 | struct firewire_comm *fc; |
331 | struct fw_xferq *xferq; |
332 | struct fw_xfer *xfer; |
333 | struct mbuf *m; |
334 | int i; |
335 | |
336 | FWIPDEBUG(ifp, "initializing\n" ); |
337 | |
338 | fc = sc->sc_fd.fc; |
339 | if (sc->sc_dma_ch < 0) { |
340 | sc->sc_dma_ch = fw_open_isodma(fc, /* tx */0); |
341 | if (sc->sc_dma_ch < 0) |
342 | return ENXIO; |
343 | xferq = fc->ir[sc->sc_dma_ch]; |
344 | xferq->flag |= |
345 | FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM; |
346 | xferq->flag &= ~0xff; |
347 | xferq->flag |= broadcast_channel & 0xff; |
348 | /* register fwip_input handler */ |
349 | xferq->sc = (void *) sc; |
350 | xferq->hand = fwip_stream_input; |
351 | xferq->bnchunk = rx_queue_len; |
352 | xferq->bnpacket = 1; |
353 | xferq->psize = MCLBYTES; |
354 | xferq->queued = 0; |
355 | xferq->buf = NULL; |
356 | xferq->bulkxfer = (struct fw_bulkxfer *) malloc( |
357 | sizeof(struct fw_bulkxfer) * xferq->bnchunk, |
358 | M_FW, M_WAITOK); |
359 | if (xferq->bulkxfer == NULL) { |
360 | aprint_error_ifnet(ifp, "if_fwip: malloc failed\n" ); |
361 | return ENOMEM; |
362 | } |
363 | STAILQ_INIT(&xferq->stvalid); |
364 | STAILQ_INIT(&xferq->stfree); |
365 | STAILQ_INIT(&xferq->stdma); |
366 | xferq->stproc = NULL; |
367 | for (i = 0; i < xferq->bnchunk; i++) { |
368 | m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); |
369 | xferq->bulkxfer[i].mbuf = m; |
370 | if (m != NULL) { |
371 | m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; |
372 | STAILQ_INSERT_TAIL(&xferq->stfree, |
373 | &xferq->bulkxfer[i], link); |
374 | } else |
375 | aprint_error_ifnet(ifp, |
376 | "fwip_as_input: m_getcl failed\n" ); |
377 | } |
378 | |
379 | sc->sc_fwb.start = INET_FIFO; |
380 | sc->sc_fwb.end = INET_FIFO + 16384; /* S3200 packet size */ |
381 | |
382 | /* pre-allocate xfer */ |
383 | STAILQ_INIT(&sc->sc_fwb.xferlist); |
384 | for (i = 0; i < rx_queue_len; i++) { |
385 | xfer = fw_xfer_alloc(M_FW); |
386 | if (xfer == NULL) |
387 | break; |
388 | m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); |
389 | xfer->recv.payload = mtod(m, uint32_t *); |
390 | xfer->recv.pay_len = MCLBYTES; |
391 | xfer->hand = fwip_unicast_input; |
392 | xfer->fc = fc; |
393 | xfer->sc = (void *) sc; |
394 | xfer->mbuf = m; |
395 | STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link); |
396 | } |
397 | fw_bindadd(fc, &sc->sc_fwb); |
398 | |
399 | STAILQ_INIT(&sc->sc_xferlist); |
400 | for (i = 0; i < TX_MAX_QUEUE; i++) { |
401 | xfer = fw_xfer_alloc(M_FW); |
402 | if (xfer == NULL) |
403 | break; |
404 | xfer->send.spd = tx_speed; |
405 | xfer->fc = sc->sc_fd.fc; |
406 | xfer->sc = (void *)sc; |
407 | xfer->hand = fwip_output_callback; |
408 | STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); |
409 | } |
410 | } else |
411 | xferq = fc->ir[sc->sc_dma_ch]; |
412 | |
413 | sc->sc_last_dest.hi = 0; |
414 | sc->sc_last_dest.lo = 0; |
415 | |
416 | /* start dma */ |
417 | if ((xferq->flag & FWXFERQ_RUNNING) == 0) |
418 | fc->irx_enable(fc, sc->sc_dma_ch); |
419 | |
420 | ifp->if_flags |= IFF_RUNNING; |
421 | ifp->if_flags &= ~IFF_OACTIVE; |
422 | |
423 | #if 0 |
424 | /* attempt to start output */ |
425 | fwip_start(ifp); |
426 | #endif |
427 | return 0; |
428 | } |
429 | |
430 | static void |
431 | fwip_stop(struct ifnet *ifp, int disable) |
432 | { |
433 | struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; |
434 | struct firewire_comm *fc = sc->sc_fd.fc; |
435 | struct fw_xferq *xferq; |
436 | struct fw_xfer *xfer, *next; |
437 | int i; |
438 | |
439 | if (sc->sc_dma_ch >= 0) { |
440 | xferq = fc->ir[sc->sc_dma_ch]; |
441 | |
442 | if (xferq->flag & FWXFERQ_RUNNING) |
443 | fc->irx_disable(fc, sc->sc_dma_ch); |
444 | xferq->flag &= |
445 | ~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM | |
446 | FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK); |
447 | xferq->hand = NULL; |
448 | |
449 | for (i = 0; i < xferq->bnchunk; i++) |
450 | m_freem(xferq->bulkxfer[i].mbuf); |
451 | free(xferq->bulkxfer, M_FW); |
452 | |
453 | fw_bindremove(fc, &sc->sc_fwb); |
454 | for (xfer = STAILQ_FIRST(&sc->sc_fwb.xferlist); xfer != NULL; |
455 | xfer = next) { |
456 | next = STAILQ_NEXT(xfer, link); |
457 | fw_xfer_free(xfer); |
458 | } |
459 | |
460 | for (xfer = STAILQ_FIRST(&sc->sc_xferlist); xfer != NULL; |
461 | xfer = next) { |
462 | next = STAILQ_NEXT(xfer, link); |
463 | fw_xfer_free(xfer); |
464 | } |
465 | |
466 | xferq->bulkxfer = NULL; |
467 | sc->sc_dma_ch = -1; |
468 | } |
469 | |
470 | ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); |
471 | } |
472 | |
473 | static void |
474 | fwip_post_busreset(void *arg) |
475 | { |
476 | struct fwip_softc *sc = arg; |
477 | struct crom_src *src; |
478 | struct crom_chunk *root; |
479 | |
480 | src = sc->sc_fd.fc->crom_src; |
481 | root = sc->sc_fd.fc->crom_root; |
482 | |
483 | /* RFC2734 IPv4 over IEEE1394 */ |
484 | memset(&sc->sc_unit4, 0, sizeof(struct crom_chunk)); |
485 | crom_add_chunk(src, root, &sc->sc_unit4, CROM_UDIR); |
486 | crom_add_entry(&sc->sc_unit4, CSRKEY_SPEC, CSRVAL_IETF); |
487 | crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_spec4, "IANA" ); |
488 | crom_add_entry(&sc->sc_unit4, CSRKEY_VER, 1); |
489 | crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_ver4, "IPv4" ); |
490 | |
491 | /* RFC3146 IPv6 over IEEE1394 */ |
492 | memset(&sc->sc_unit6, 0, sizeof(struct crom_chunk)); |
493 | crom_add_chunk(src, root, &sc->sc_unit6, CROM_UDIR); |
494 | crom_add_entry(&sc->sc_unit6, CSRKEY_SPEC, CSRVAL_IETF); |
495 | crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_spec6, "IANA" ); |
496 | crom_add_entry(&sc->sc_unit6, CSRKEY_VER, 2); |
497 | crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_ver6, "IPv6" ); |
498 | |
499 | sc->sc_last_dest.hi = 0; |
500 | sc->sc_last_dest.lo = 0; |
501 | ieee1394_drain(sc->sc_eth.fwip_ifp); |
502 | } |
503 | |
504 | static void |
505 | fwip_output_callback(struct fw_xfer *xfer) |
506 | { |
507 | struct fwip_softc *sc = (struct fwip_softc *)xfer->sc; |
508 | struct ifnet *ifp; |
509 | |
510 | ifp = sc->sc_eth.fwip_ifp; |
511 | /* XXX error check */ |
512 | FWIPDEBUG(ifp, "resp = %d\n" , xfer->resp); |
513 | if (xfer->resp != 0) |
514 | ifp->if_oerrors++; |
515 | |
516 | m_freem(xfer->mbuf); |
517 | fw_xfer_unload(xfer); |
518 | |
519 | mutex_enter(&sc->sc_mtx); |
520 | STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); |
521 | mutex_exit(&sc->sc_mtx); |
522 | |
523 | /* for queue full */ |
524 | if (ifp->if_snd.ifq_head != NULL) |
525 | fwip_start(ifp); |
526 | } |
527 | |
528 | /* Async. stream output */ |
529 | static void |
530 | fwip_async_output(struct fwip_softc *sc, struct ifnet *ifp) |
531 | { |
532 | struct firewire_comm *fc = sc->sc_fd.fc; |
533 | struct mbuf *m; |
534 | struct m_tag *mtag; |
535 | struct fw_hwaddr *destfw; |
536 | struct fw_xfer *xfer; |
537 | struct fw_xferq *xferq; |
538 | struct fw_pkt *fp; |
539 | uint16_t nodeid; |
540 | int error; |
541 | int i = 0; |
542 | |
543 | xfer = NULL; |
544 | xferq = fc->atq; |
545 | while ((xferq->queued < xferq->maxq - 1) && |
546 | (ifp->if_snd.ifq_head != NULL)) { |
547 | mutex_enter(&sc->sc_mtx); |
548 | if (STAILQ_EMPTY(&sc->sc_xferlist)) { |
549 | mutex_exit(&sc->sc_mtx); |
550 | #if 0 |
551 | aprint_normal("if_fwip: lack of xfer\n" ); |
552 | #endif |
553 | break; |
554 | } |
555 | IF_DEQUEUE(&ifp->if_snd, m); |
556 | if (m == NULL) { |
557 | mutex_exit(&sc->sc_mtx); |
558 | break; |
559 | } |
560 | xfer = STAILQ_FIRST(&sc->sc_xferlist); |
561 | STAILQ_REMOVE_HEAD(&sc->sc_xferlist, link); |
562 | mutex_exit(&sc->sc_mtx); |
563 | |
564 | /* |
565 | * Dig out the link-level address which |
566 | * firewire_output got via arp or neighbour |
567 | * discovery. If we don't have a link-level address, |
568 | * just stick the thing on the broadcast channel. |
569 | */ |
570 | mtag = m_tag_find(m, MTAG_FIREWIRE_HWADDR, 0); |
571 | if (mtag == NULL) |
572 | destfw = 0; |
573 | else |
574 | destfw = (struct fw_hwaddr *) (mtag + 1); |
575 | |
576 | /* |
577 | * Put the mbuf in the xfer early in case we hit an |
578 | * error case below - fwip_output_callback will free |
579 | * the mbuf. |
580 | */ |
581 | xfer->mbuf = m; |
582 | |
583 | /* |
584 | * We use the arp result (if any) to add a suitable firewire |
585 | * packet header before handing off to the bus. |
586 | */ |
587 | fp = &xfer->send.hdr; |
588 | nodeid = FWLOCALBUS | fc->nodeid; |
589 | if ((m->m_flags & M_BCAST) || !destfw) { |
590 | /* |
591 | * Broadcast packets are sent as GASP packets with |
592 | * specifier ID 0x00005e, version 1 on the broadcast |
593 | * channel. To be conservative, we send at the |
594 | * slowest possible speed. |
595 | */ |
596 | uint32_t *p; |
597 | |
598 | M_PREPEND(m, 2 * sizeof(uint32_t), M_DONTWAIT); |
599 | p = mtod(m, uint32_t *); |
600 | fp->mode.stream.len = m->m_pkthdr.len; |
601 | fp->mode.stream.chtag = broadcast_channel; |
602 | fp->mode.stream.tcode = FWTCODE_STREAM; |
603 | fp->mode.stream.sy = 0; |
604 | xfer->send.spd = 0; |
605 | p[0] = htonl(nodeid << 16); |
606 | p[1] = htonl((0x5e << 24) | 1); |
607 | } else { |
608 | /* |
609 | * Unicast packets are sent as block writes to the |
610 | * target's unicast fifo address. If we can't |
611 | * find the node address, we just give up. We |
612 | * could broadcast it but that might overflow |
613 | * the packet size limitations due to the |
614 | * extra GASP header. Note: the hardware |
615 | * address is stored in network byte order to |
616 | * make life easier for ARP. |
617 | */ |
618 | struct fw_device *fd; |
619 | struct fw_eui64 eui; |
620 | |
621 | eui.hi = ntohl(destfw->sender_unique_ID_hi); |
622 | eui.lo = ntohl(destfw->sender_unique_ID_lo); |
623 | if (sc->sc_last_dest.hi != eui.hi || |
624 | sc->sc_last_dest.lo != eui.lo) { |
625 | fd = fw_noderesolve_eui64(fc, &eui); |
626 | if (!fd) { |
627 | /* error */ |
628 | ifp->if_oerrors++; |
629 | /* XXX set error code */ |
630 | fwip_output_callback(xfer); |
631 | continue; |
632 | |
633 | } |
634 | sc->sc_last_hdr.mode.wreqb.dst = |
635 | FWLOCALBUS | fd->dst; |
636 | sc->sc_last_hdr.mode.wreqb.tlrt = 0; |
637 | sc->sc_last_hdr.mode.wreqb.tcode = |
638 | FWTCODE_WREQB; |
639 | sc->sc_last_hdr.mode.wreqb.pri = 0; |
640 | sc->sc_last_hdr.mode.wreqb.src = nodeid; |
641 | sc->sc_last_hdr.mode.wreqb.dest_hi = |
642 | ntohs(destfw->sender_unicast_FIFO_hi); |
643 | sc->sc_last_hdr.mode.wreqb.dest_lo = |
644 | ntohl(destfw->sender_unicast_FIFO_lo); |
645 | sc->sc_last_hdr.mode.wreqb.extcode = 0; |
646 | sc->sc_last_dest = eui; |
647 | } |
648 | |
649 | fp->mode.wreqb = sc->sc_last_hdr.mode.wreqb; |
650 | fp->mode.wreqb.len = m->m_pkthdr.len; |
651 | xfer->send.spd = min(destfw->sspd, fc->speed); |
652 | } |
653 | |
654 | xfer->send.pay_len = m->m_pkthdr.len; |
655 | |
656 | error = fw_asyreq(fc, -1, xfer); |
657 | if (error == EAGAIN) { |
658 | /* |
659 | * We ran out of tlabels - requeue the packet |
660 | * for later transmission. |
661 | */ |
662 | xfer->mbuf = 0; |
663 | mutex_enter(&sc->sc_mtx); |
664 | STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); |
665 | mutex_exit(&sc->sc_mtx); |
666 | IF_PREPEND(&ifp->if_snd, m); |
667 | break; |
668 | } |
669 | if (error) { |
670 | /* error */ |
671 | ifp->if_oerrors++; |
672 | /* XXX set error code */ |
673 | fwip_output_callback(xfer); |
674 | continue; |
675 | } else { |
676 | ifp->if_opackets++; |
677 | i++; |
678 | } |
679 | } |
680 | #if 0 |
681 | if (i > 1) |
682 | aprint_normal("%d queued\n" , i); |
683 | #endif |
684 | if (i > 0) |
685 | xferq->start(fc); |
686 | } |
687 | |
688 | /* Async. stream output */ |
689 | static void |
690 | fwip_stream_input(struct fw_xferq *xferq) |
691 | { |
692 | struct mbuf *m, *m0; |
693 | struct m_tag *mtag; |
694 | struct ifnet *ifp; |
695 | struct fwip_softc *sc; |
696 | struct fw_bulkxfer *sxfer; |
697 | struct fw_pkt *fp; |
698 | uint16_t src; |
699 | uint32_t *p; |
700 | |
701 | sc = (struct fwip_softc *)xferq->sc; |
702 | ifp = sc->sc_eth.fwip_ifp; |
703 | while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) { |
704 | STAILQ_REMOVE_HEAD(&xferq->stvalid, link); |
705 | fp = mtod(sxfer->mbuf, struct fw_pkt *); |
706 | if (sc->sc_fd.fc->irx_post != NULL) |
707 | sc->sc_fd.fc->irx_post(sc->sc_fd.fc, fp->mode.ld); |
708 | m = sxfer->mbuf; |
709 | |
710 | /* insert new rbuf */ |
711 | sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); |
712 | if (m0 != NULL) { |
713 | m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size; |
714 | STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link); |
715 | } else |
716 | aprint_error_ifnet(ifp, |
717 | "fwip_as_input: m_getcl failed\n" ); |
718 | |
719 | /* |
720 | * We must have a GASP header - leave the |
721 | * encapsulation sanity checks to the generic |
722 | * code. Remeber that we also have the firewire async |
723 | * stream header even though that isn't accounted for |
724 | * in mode.stream.len. |
725 | */ |
726 | if (sxfer->resp != 0 || |
727 | fp->mode.stream.len < 2 * sizeof(uint32_t)) { |
728 | m_freem(m); |
729 | ifp->if_ierrors++; |
730 | continue; |
731 | } |
732 | m->m_len = m->m_pkthdr.len = fp->mode.stream.len |
733 | + sizeof(fp->mode.stream); |
734 | |
735 | /* |
736 | * If we received the packet on the broadcast channel, |
737 | * mark it as broadcast, otherwise we assume it must |
738 | * be multicast. |
739 | */ |
740 | if (fp->mode.stream.chtag == broadcast_channel) |
741 | m->m_flags |= M_BCAST; |
742 | else |
743 | m->m_flags |= M_MCAST; |
744 | |
745 | /* |
746 | * Make sure we recognise the GASP specifier and |
747 | * version. |
748 | */ |
749 | p = mtod(m, uint32_t *); |
750 | if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != |
751 | 0x00005e || |
752 | (ntohl(p[2]) & 0xffffff) != 1) { |
753 | FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n" , |
754 | ntohl(p[1]), ntohl(p[2])); |
755 | m_freem(m); |
756 | ifp->if_ierrors++; |
757 | continue; |
758 | } |
759 | |
760 | /* |
761 | * Record the sender ID for possible BPF usage. |
762 | */ |
763 | src = ntohl(p[1]) >> 16; |
764 | if (ifp->if_bpf) { |
765 | mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID, |
766 | 2 * sizeof(uint32_t), M_NOWAIT); |
767 | if (mtag) { |
768 | /* bpf wants it in network byte order */ |
769 | struct fw_device *fd; |
770 | uint32_t *p2 = (uint32_t *) (mtag + 1); |
771 | |
772 | fd = fw_noderesolve_nodeid(sc->sc_fd.fc, |
773 | src & 0x3f); |
774 | if (fd) { |
775 | p2[0] = htonl(fd->eui.hi); |
776 | p2[1] = htonl(fd->eui.lo); |
777 | } else { |
778 | p2[0] = 0; |
779 | p2[1] = 0; |
780 | } |
781 | m_tag_prepend(m, mtag); |
782 | } |
783 | } |
784 | |
785 | /* |
786 | * Trim off the GASP header |
787 | */ |
788 | m_adj(m, 3*sizeof(uint32_t)); |
789 | m_set_rcvif(m, ifp); |
790 | ieee1394_input(ifp, m, src); |
791 | ifp->if_ipackets++; |
792 | } |
793 | if (STAILQ_FIRST(&xferq->stfree) != NULL) |
794 | sc->sc_fd.fc->irx_enable(sc->sc_fd.fc, sc->sc_dma_ch); |
795 | } |
796 | |
797 | static inline void |
798 | fwip_unicast_input_recycle(struct fwip_softc *sc, struct fw_xfer *xfer) |
799 | { |
800 | struct mbuf *m; |
801 | |
802 | /* |
803 | * We have finished with a unicast xfer. Allocate a new |
804 | * cluster and stick it on the back of the input queue. |
805 | */ |
806 | m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); |
807 | if (m == NULL) |
808 | aprint_error_dev(sc->sc_fd.dev, |
809 | "fwip_unicast_input_recycle: m_getcl failed\n" ); |
810 | xfer->recv.payload = mtod(m, uint32_t *); |
811 | xfer->recv.pay_len = MCLBYTES; |
812 | xfer->mbuf = m; |
813 | mutex_enter(&sc->sc_fwb.fwb_mtx); |
814 | STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link); |
815 | mutex_exit(&sc->sc_fwb.fwb_mtx); |
816 | } |
817 | |
818 | static void |
819 | fwip_unicast_input(struct fw_xfer *xfer) |
820 | { |
821 | uint64_t address; |
822 | struct mbuf *m; |
823 | struct m_tag *mtag; |
824 | struct ifnet *ifp; |
825 | struct fwip_softc *sc; |
826 | struct fw_pkt *fp; |
827 | int rtcode; |
828 | |
829 | sc = (struct fwip_softc *)xfer->sc; |
830 | ifp = sc->sc_eth.fwip_ifp; |
831 | m = xfer->mbuf; |
832 | xfer->mbuf = 0; |
833 | fp = &xfer->recv.hdr; |
834 | |
835 | /* |
836 | * Check the fifo address - we only accept addresses of |
837 | * exactly INET_FIFO. |
838 | */ |
839 | address = ((uint64_t)fp->mode.wreqb.dest_hi << 32) |
840 | | fp->mode.wreqb.dest_lo; |
841 | if (fp->mode.wreqb.tcode != FWTCODE_WREQB) { |
842 | rtcode = FWRCODE_ER_TYPE; |
843 | } else if (address != INET_FIFO) { |
844 | rtcode = FWRCODE_ER_ADDR; |
845 | } else { |
846 | rtcode = FWRCODE_COMPLETE; |
847 | } |
848 | |
849 | /* |
850 | * Pick up a new mbuf and stick it on the back of the receive |
851 | * queue. |
852 | */ |
853 | fwip_unicast_input_recycle(sc, xfer); |
854 | |
855 | /* |
856 | * If we've already rejected the packet, give up now. |
857 | */ |
858 | if (rtcode != FWRCODE_COMPLETE) { |
859 | m_freem(m); |
860 | ifp->if_ierrors++; |
861 | return; |
862 | } |
863 | |
864 | if (ifp->if_bpf) { |
865 | /* |
866 | * Record the sender ID for possible BPF usage. |
867 | */ |
868 | mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID, |
869 | 2 * sizeof(uint32_t), M_NOWAIT); |
870 | if (mtag) { |
871 | /* bpf wants it in network byte order */ |
872 | struct fw_device *fd; |
873 | uint32_t *p = (uint32_t *) (mtag + 1); |
874 | |
875 | fd = fw_noderesolve_nodeid(sc->sc_fd.fc, |
876 | fp->mode.wreqb.src & 0x3f); |
877 | if (fd) { |
878 | p[0] = htonl(fd->eui.hi); |
879 | p[1] = htonl(fd->eui.lo); |
880 | } else { |
881 | p[0] = 0; |
882 | p[1] = 0; |
883 | } |
884 | m_tag_prepend(m, mtag); |
885 | } |
886 | } |
887 | |
888 | /* |
889 | * Hand off to the generic encapsulation code. We don't use |
890 | * ifp->if_input so that we can pass the source nodeid as an |
891 | * argument to facilitate link-level fragment reassembly. |
892 | */ |
893 | m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len; |
894 | m_set_rcvif(m, ifp); |
895 | ieee1394_input(ifp, m, fp->mode.wreqb.src); |
896 | ifp->if_ipackets++; |
897 | } |
898 | |