1 | /* |
2 | * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting |
3 | * Copyright (c) 2002-2008 Atheros Communications, Inc. |
4 | * |
5 | * Permission to use, copy, modify, and/or distribute this software for any |
6 | * purpose with or without fee is hereby granted, provided that the above |
7 | * copyright notice and this permission notice appear in all copies. |
8 | * |
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
16 | * |
17 | * $Id: ar2413.c,v 1.3 2013/09/12 12:04:37 martin Exp $ |
18 | */ |
19 | #include "opt_ah.h" |
20 | |
21 | #include "ah.h" |
22 | #include "ah_internal.h" |
23 | |
24 | #include "ar5212/ar5212.h" |
25 | #include "ar5212/ar5212reg.h" |
26 | #include "ar5212/ar5212phy.h" |
27 | |
28 | #include "ah_eeprom_v3.h" |
29 | |
30 | #define AH_5212_2413 |
31 | #include "ar5212/ar5212.ini" |
32 | |
33 | #define N(a) (sizeof(a)/sizeof(a[0])) |
34 | |
35 | struct ar2413State { |
36 | RF_HAL_FUNCS base; /* public state, must be first */ |
37 | uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; |
38 | |
39 | uint32_t Bank1Data[N(ar5212Bank1_2413)]; |
40 | uint32_t Bank2Data[N(ar5212Bank2_2413)]; |
41 | uint32_t Bank3Data[N(ar5212Bank3_2413)]; |
42 | uint32_t Bank6Data[N(ar5212Bank6_2413)]; |
43 | uint32_t Bank7Data[N(ar5212Bank7_2413)]; |
44 | |
45 | /* |
46 | * Private state for reduced stack usage. |
47 | */ |
48 | /* filled out Vpd table for all pdGains (chanL) */ |
49 | uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] |
50 | [MAX_PWR_RANGE_IN_HALF_DB]; |
51 | /* filled out Vpd table for all pdGains (chanR) */ |
52 | uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] |
53 | [MAX_PWR_RANGE_IN_HALF_DB]; |
54 | /* filled out Vpd table for all pdGains (interpolated) */ |
55 | uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] |
56 | [MAX_PWR_RANGE_IN_HALF_DB]; |
57 | }; |
58 | #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal) |
59 | |
60 | extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, |
61 | uint32_t numBits, uint32_t firstBit, uint32_t column); |
62 | |
63 | static void |
64 | ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, |
65 | int writes) |
66 | { |
67 | HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes); |
68 | HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes); |
69 | HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes); |
70 | } |
71 | |
72 | /* |
73 | * Take the MHz channel value and set the Channel value |
74 | * |
75 | * ASSUMES: Writes enabled to analog bus |
76 | */ |
77 | static HAL_BOOL |
78 | ar2413SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) |
79 | { |
80 | uint32_t channelSel = 0; |
81 | uint32_t bModeSynth = 0; |
82 | uint32_t aModeRefSel = 0; |
83 | uint32_t reg32 = 0; |
84 | uint16_t freq; |
85 | |
86 | OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); |
87 | |
88 | if (chan->channel < 4800) { |
89 | uint32_t txctl; |
90 | |
91 | if (((chan->channel - 2192) % 5) == 0) { |
92 | channelSel = ((chan->channel - 672) * 2 - 3040)/10; |
93 | bModeSynth = 0; |
94 | } else if (((chan->channel - 2224) % 5) == 0) { |
95 | channelSel = ((chan->channel - 704) * 2 - 3040) / 10; |
96 | bModeSynth = 1; |
97 | } else { |
98 | HALDEBUG(ah, HAL_DEBUG_ANY, |
99 | "%s: invalid channel %u MHz\n" , |
100 | __func__, chan->channel); |
101 | return AH_FALSE; |
102 | } |
103 | |
104 | channelSel = (channelSel << 2) & 0xff; |
105 | channelSel = ath_hal_reverseBits(channelSel, 8); |
106 | |
107 | txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); |
108 | if (chan->channel == 2484) { |
109 | /* Enable channel spreading for channel 14 */ |
110 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
111 | txctl | AR_PHY_CCK_TX_CTRL_JAPAN); |
112 | } else { |
113 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
114 | txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); |
115 | } |
116 | } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) { |
117 | freq = chan->channel - 2; /* Align to even 5MHz raster */ |
118 | channelSel = ath_hal_reverseBits( |
119 | (uint32_t)(((freq - 4800)*10)/25 + 1), 8); |
120 | aModeRefSel = ath_hal_reverseBits(0, 2); |
121 | } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { |
122 | channelSel = ath_hal_reverseBits( |
123 | ((chan->channel - 4800) / 20 << 2), 8); |
124 | aModeRefSel = ath_hal_reverseBits(3, 2); |
125 | } else if ((chan->channel % 10) == 0) { |
126 | channelSel = ath_hal_reverseBits( |
127 | ((chan->channel - 4800) / 10 << 1), 8); |
128 | aModeRefSel = ath_hal_reverseBits(2, 2); |
129 | } else if ((chan->channel % 5) == 0) { |
130 | channelSel = ath_hal_reverseBits( |
131 | (chan->channel - 4800) / 5, 8); |
132 | aModeRefSel = ath_hal_reverseBits(1, 2); |
133 | } else { |
134 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n" , |
135 | __func__, chan->channel); |
136 | return AH_FALSE; |
137 | } |
138 | |
139 | reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | |
140 | (1 << 12) | 0x1; |
141 | OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); |
142 | |
143 | reg32 >>= 8; |
144 | OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); |
145 | |
146 | AH_PRIVATE(ah)->ah_curchan = chan; |
147 | |
148 | return AH_TRUE; |
149 | } |
150 | |
151 | /* |
152 | * Reads EEPROM header info from device structure and programs |
153 | * all rf registers |
154 | * |
155 | * REQUIRES: Access to the analog rf device |
156 | */ |
157 | static HAL_BOOL |
158 | ar2413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain) |
159 | { |
160 | #define RF_BANK_SETUP(_priv, _ix, _col) do { \ |
161 | int i; \ |
162 | for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \ |
163 | (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\ |
164 | } while (0) |
165 | struct ath_hal_5212 *ahp = AH5212(ah); |
166 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
167 | uint16_t ob2GHz = 0, db2GHz = 0; |
168 | struct ar2413State *priv = AR2413(ah); |
169 | int regWrites = 0; |
170 | |
171 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, |
172 | "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n" , |
173 | __func__, chan->channel, chan->channelFlags, modesIndex); |
174 | |
175 | HALASSERT(priv); |
176 | |
177 | /* Setup rf parameters */ |
178 | switch (chan->channelFlags & CHANNEL_ALL) { |
179 | case CHANNEL_B: |
180 | ob2GHz = ee->ee_obFor24; |
181 | db2GHz = ee->ee_dbFor24; |
182 | break; |
183 | case CHANNEL_G: |
184 | case CHANNEL_108G: |
185 | ob2GHz = ee->ee_obFor24g; |
186 | db2GHz = ee->ee_dbFor24g; |
187 | break; |
188 | default: |
189 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n" , |
190 | __func__, chan->channelFlags); |
191 | return AH_FALSE; |
192 | } |
193 | |
194 | /* Bank 1 Write */ |
195 | RF_BANK_SETUP(priv, 1, 1); |
196 | |
197 | /* Bank 2 Write */ |
198 | RF_BANK_SETUP(priv, 2, modesIndex); |
199 | |
200 | /* Bank 3 Write */ |
201 | RF_BANK_SETUP(priv, 3, modesIndex); |
202 | |
203 | /* Bank 6 Write */ |
204 | RF_BANK_SETUP(priv, 6, modesIndex); |
205 | |
206 | ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 168, 0); |
207 | ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 165, 0); |
208 | |
209 | /* Bank 7 Setup */ |
210 | RF_BANK_SETUP(priv, 7, modesIndex); |
211 | |
212 | /* Write Analog registers */ |
213 | HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites); |
214 | HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites); |
215 | HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites); |
216 | HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites); |
217 | HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites); |
218 | |
219 | /* Now that we have reprogrammed rfgain value, clear the flag. */ |
220 | ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; |
221 | |
222 | return AH_TRUE; |
223 | #undef RF_BANK_SETUP |
224 | } |
225 | |
226 | /* |
227 | * Return a reference to the requested RF Bank. |
228 | */ |
229 | static uint32_t * |
230 | ar2413GetRfBank(struct ath_hal *ah, int bank) |
231 | { |
232 | struct ar2413State *priv = AR2413(ah); |
233 | |
234 | HALASSERT(priv != AH_NULL); |
235 | switch (bank) { |
236 | case 1: return priv->Bank1Data; |
237 | case 2: return priv->Bank2Data; |
238 | case 3: return priv->Bank3Data; |
239 | case 6: return priv->Bank6Data; |
240 | case 7: return priv->Bank7Data; |
241 | } |
242 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n" , |
243 | __func__, bank); |
244 | return AH_NULL; |
245 | } |
246 | |
247 | /* |
248 | * Return indices surrounding the value in sorted integer lists. |
249 | * |
250 | * NB: the input list is assumed to be sorted in ascending order |
251 | */ |
252 | static void |
253 | GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, |
254 | uint32_t *vlo, uint32_t *vhi) |
255 | { |
256 | int16_t target = v; |
257 | const uint16_t *ep = lp+listSize; |
258 | const uint16_t *tp; |
259 | |
260 | /* |
261 | * Check first and last elements for out-of-bounds conditions. |
262 | */ |
263 | if (target < lp[0]) { |
264 | *vlo = *vhi = 0; |
265 | return; |
266 | } |
267 | if (target >= ep[-1]) { |
268 | *vlo = *vhi = listSize - 1; |
269 | return; |
270 | } |
271 | |
272 | /* look for value being near or between 2 values in list */ |
273 | for (tp = lp; tp < ep; tp++) { |
274 | /* |
275 | * If value is close to the current value of the list |
276 | * then target is not between values, it is one of the values |
277 | */ |
278 | if (*tp == target) { |
279 | *vlo = *vhi = tp - (const uint16_t *) lp; |
280 | return; |
281 | } |
282 | /* |
283 | * Look for value being between current value and next value |
284 | * if so return these 2 values |
285 | */ |
286 | if (target < tp[1]) { |
287 | *vlo = tp - (const uint16_t *) lp; |
288 | *vhi = *vlo + 1; |
289 | return; |
290 | } |
291 | } |
292 | } |
293 | |
294 | /* |
295 | * Fill the Vpdlist for indices Pmax-Pmin |
296 | */ |
297 | static HAL_BOOL |
298 | ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, |
299 | const int16_t *pwrList, const uint16_t *VpdList, |
300 | uint16_t numIntercepts, uint16_t retVpdList[][64]) |
301 | { |
302 | uint16_t ii, kk; |
303 | int16_t currPwr = (int16_t)(2*Pmin); |
304 | /* since Pmin is pwr*2 and pwrList is 4*pwr */ |
305 | uint32_t idxL = 0, idxR = 0; |
306 | |
307 | ii = 0; |
308 | |
309 | if (numIntercepts < 2) |
310 | return AH_FALSE; |
311 | |
312 | while (ii <= (uint16_t)(Pmax - Pmin)) { |
313 | GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, |
314 | numIntercepts, &(idxL), &(idxR)); |
315 | if (idxR < 1) |
316 | idxR = 1; /* extrapolate below */ |
317 | if (idxL == (uint32_t)(numIntercepts - 1)) |
318 | idxL = numIntercepts - 2; /* extrapolate above */ |
319 | if (pwrList[idxL] == pwrList[idxR]) |
320 | kk = VpdList[idxL]; |
321 | else |
322 | kk = (uint16_t) |
323 | (((currPwr - pwrList[idxL])*VpdList[idxR]+ |
324 | (pwrList[idxR] - currPwr)*VpdList[idxL])/ |
325 | (pwrList[idxR] - pwrList[idxL])); |
326 | retVpdList[pdGainIdx][ii] = kk; |
327 | ii++; |
328 | currPwr += 2; /* half dB steps */ |
329 | } |
330 | |
331 | return AH_TRUE; |
332 | } |
333 | |
334 | /* |
335 | * Returns interpolated or the scaled up interpolated value |
336 | */ |
337 | static int16_t |
338 | interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, |
339 | int16_t targetLeft, int16_t targetRight) |
340 | { |
341 | int16_t rv; |
342 | |
343 | if (srcRight != srcLeft) { |
344 | rv = ((target - srcLeft)*targetRight + |
345 | (srcRight - target)*targetLeft) / (srcRight - srcLeft); |
346 | } else { |
347 | rv = targetLeft; |
348 | } |
349 | return rv; |
350 | } |
351 | |
352 | /* |
353 | * Uses the data points read from EEPROM to reconstruct the pdadc power table |
354 | * Called by ar2413SetPowerTable() |
355 | */ |
356 | static int |
357 | ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, |
358 | const RAW_DATA_STRUCT_2413 *pRawDataset, |
359 | uint16_t pdGainOverlap_t2, |
360 | int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], |
361 | uint16_t pPdGainValues[], uint16_t pPDADCValues[]) |
362 | { |
363 | struct ar2413State *priv = AR2413(ah); |
364 | #define VpdTable_L priv->vpdTable_L |
365 | #define VpdTable_R priv->vpdTable_R |
366 | #define VpdTable_I priv->vpdTable_I |
367 | uint32_t ii, jj, kk; |
368 | int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ |
369 | uint32_t idxL = 0, idxR = 0; |
370 | uint32_t numPdGainsUsed = 0; |
371 | /* |
372 | * If desired to support -ve power levels in future, just |
373 | * change pwr_I_0 to signed 5-bits. |
374 | */ |
375 | int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
376 | /* to accomodate -ve power levels later on. */ |
377 | int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
378 | /* to accomodate -ve power levels later on */ |
379 | uint16_t numVpd = 0; |
380 | uint16_t Vpd_step; |
381 | int16_t tmpVal ; |
382 | uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; |
383 | |
384 | /* Get upper lower index */ |
385 | GetLowerUpperIndex(channel, pRawDataset->pChannels, |
386 | pRawDataset->numChannels, &(idxL), &(idxR)); |
387 | |
388 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
389 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
390 | /* work backwards 'cause highest pdGain for lowest power */ |
391 | numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; |
392 | if (numVpd > 0) { |
393 | pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; |
394 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; |
395 | if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { |
396 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; |
397 | } |
398 | Pmin_t2[numPdGainsUsed] = (int16_t) |
399 | (Pmin_t2[numPdGainsUsed] / 2); |
400 | Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
401 | if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) |
402 | Pmax_t2[numPdGainsUsed] = |
403 | pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
404 | Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); |
405 | ar2413FillVpdTable( |
406 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
407 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), |
408 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L |
409 | ); |
410 | ar2413FillVpdTable( |
411 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
412 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), |
413 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R |
414 | ); |
415 | for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { |
416 | VpdTable_I[numPdGainsUsed][kk] = |
417 | interpolate_signed( |
418 | channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], |
419 | (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); |
420 | } |
421 | /* fill VpdTable_I for this pdGain */ |
422 | numPdGainsUsed++; |
423 | } |
424 | /* if this pdGain is used */ |
425 | } |
426 | |
427 | *pMinCalPower = Pmin_t2[0]; |
428 | kk = 0; /* index for the final table */ |
429 | for (ii = 0; ii < numPdGainsUsed; ii++) { |
430 | if (ii == (numPdGainsUsed - 1)) |
431 | pPdGainBoundaries[ii] = Pmax_t2[ii] + |
432 | PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; |
433 | else |
434 | pPdGainBoundaries[ii] = (uint16_t) |
435 | ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); |
436 | if (pPdGainBoundaries[ii] > 63) { |
437 | HALDEBUG(ah, HAL_DEBUG_ANY, |
438 | "%s: clamp pPdGainBoundaries[%d] %d\n" , |
439 | __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ |
440 | pPdGainBoundaries[ii] = 63; |
441 | } |
442 | |
443 | /* Find starting index for this pdGain */ |
444 | if (ii == 0) |
445 | ss = 0; /* for the first pdGain, start from index 0 */ |
446 | else |
447 | ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - |
448 | pdGainOverlap_t2; |
449 | Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); |
450 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
451 | /* |
452 | *-ve ss indicates need to extrapolate data below for this pdGain |
453 | */ |
454 | while (ss < 0) { |
455 | tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); |
456 | pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); |
457 | ss++; |
458 | } |
459 | |
460 | sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; |
461 | tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; |
462 | maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; |
463 | |
464 | while (ss < (int16_t)maxIndex) |
465 | pPDADCValues[kk++] = VpdTable_I[ii][ss++]; |
466 | |
467 | Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - |
468 | VpdTable_I[ii][sizeCurrVpdTable-2]); |
469 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
470 | /* |
471 | * for last gain, pdGainBoundary == Pmax_t2, so will |
472 | * have to extrapolate |
473 | */ |
474 | if (tgtIndex > maxIndex) { /* need to extrapolate above */ |
475 | while(ss < (int16_t)tgtIndex) { |
476 | tmpVal = (uint16_t) |
477 | (VpdTable_I[ii][sizeCurrVpdTable-1] + |
478 | (ss-maxIndex)*Vpd_step); |
479 | pPDADCValues[kk++] = (tmpVal > 127) ? |
480 | 127 : tmpVal; |
481 | ss++; |
482 | } |
483 | } /* extrapolated above */ |
484 | } /* for all pdGainUsed */ |
485 | |
486 | while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { |
487 | pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; |
488 | ii++; |
489 | } |
490 | while (kk < 128) { |
491 | pPDADCValues[kk] = pPDADCValues[kk-1]; |
492 | kk++; |
493 | } |
494 | |
495 | return numPdGainsUsed; |
496 | #undef VpdTable_L |
497 | #undef VpdTable_R |
498 | #undef VpdTable_I |
499 | } |
500 | |
501 | static HAL_BOOL |
502 | ar2413SetPowerTable(struct ath_hal *ah, |
503 | int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, |
504 | uint16_t *rfXpdGain) |
505 | { |
506 | struct ath_hal_5212 *ahp = AH5212(ah); |
507 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
508 | const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; |
509 | uint16_t pdGainOverlap_t2; |
510 | int16_t minCalPower2413_t2; |
511 | uint16_t *pdadcValues = ahp->ah_pcdacTable; |
512 | uint16_t gainBoundaries[4]; |
513 | uint32_t reg32, regoffset; |
514 | int i, numPdGainsUsed; |
515 | #ifndef AH_USE_INIPDGAIN |
516 | uint32_t tpcrg1; |
517 | #endif |
518 | |
519 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n" , |
520 | __func__, chan->channel,chan->channelFlags); |
521 | |
522 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
523 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
524 | else if (IS_CHAN_B(chan)) |
525 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
526 | else { |
527 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n" , __func__); |
528 | return AH_FALSE; |
529 | } |
530 | |
531 | pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), |
532 | AR_PHY_TPCRG5_PD_GAIN_OVERLAP); |
533 | |
534 | numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah, |
535 | chan->channel, pRawDataset, pdGainOverlap_t2, |
536 | &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues); |
537 | HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); |
538 | |
539 | #ifdef AH_USE_INIPDGAIN |
540 | /* |
541 | * Use pd_gains curve from eeprom; Atheros always uses |
542 | * the default curve from the ini file but some vendors |
543 | * (e.g. Zcomax) want to override this curve and not |
544 | * honoring their settings results in tx power 5dBm low. |
545 | */ |
546 | OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
547 | (pRawDataset->pDataPerChannel[0].numPdGains - 1)); |
548 | #else |
549 | tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); |
550 | tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) |
551 | | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); |
552 | switch (numPdGainsUsed) { |
553 | case 3: |
554 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; |
555 | tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); |
556 | /* fall thru... */ |
557 | case 2: |
558 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; |
559 | tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); |
560 | /* fall thru... */ |
561 | case 1: |
562 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; |
563 | tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); |
564 | break; |
565 | } |
566 | #ifdef AH_DEBUG |
567 | if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) |
568 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " |
569 | "pd_gains (default 0x%x, calculated 0x%x)\n" , |
570 | __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); |
571 | #endif |
572 | OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); |
573 | #endif |
574 | |
575 | /* |
576 | * Note the pdadc table may not start at 0 dBm power, could be |
577 | * negative or greater than 0. Need to offset the power |
578 | * values by the amount of minPower for griffin |
579 | */ |
580 | if (minCalPower2413_t2 != 0) |
581 | ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2); |
582 | else |
583 | ahp->ah_txPowerIndexOffset = 0; |
584 | |
585 | /* Finally, write the power values into the baseband power table */ |
586 | regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ |
587 | for (i = 0; i < 32; i++) { |
588 | reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | |
589 | ((pdadcValues[4*i + 1] & 0xFF) << 8) | |
590 | ((pdadcValues[4*i + 2] & 0xFF) << 16) | |
591 | ((pdadcValues[4*i + 3] & 0xFF) << 24) ; |
592 | OS_REG_WRITE(ah, regoffset, reg32); |
593 | regoffset += 4; |
594 | } |
595 | |
596 | OS_REG_WRITE(ah, AR_PHY_TPCRG5, |
597 | SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
598 | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
599 | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
600 | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
601 | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
602 | |
603 | return AH_TRUE; |
604 | } |
605 | |
606 | static int16_t |
607 | ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) |
608 | { |
609 | uint32_t ii,jj; |
610 | uint16_t Pmin=0,numVpd; |
611 | |
612 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
613 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
614 | /* work backwards 'cause highest pdGain for lowest power */ |
615 | numVpd = data->pDataPerPDGain[jj].numVpd; |
616 | if (numVpd > 0) { |
617 | Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; |
618 | return(Pmin); |
619 | } |
620 | } |
621 | return(Pmin); |
622 | } |
623 | |
624 | static int16_t |
625 | ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) |
626 | { |
627 | uint32_t ii; |
628 | uint16_t Pmax=0,numVpd; |
629 | |
630 | for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
631 | /* work forwards cuase lowest pdGain for highest power */ |
632 | numVpd = data->pDataPerPDGain[ii].numVpd; |
633 | if (numVpd > 0) { |
634 | Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; |
635 | return(Pmax); |
636 | } |
637 | } |
638 | return(Pmax); |
639 | } |
640 | |
641 | static HAL_BOOL |
642 | ar2413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, |
643 | int16_t *maxPow, int16_t *minPow) |
644 | { |
645 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
646 | const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; |
647 | const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL; |
648 | uint16_t numChannels; |
649 | int totalD,totalF, totalMin,last, i; |
650 | |
651 | *maxPow = 0; |
652 | |
653 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
654 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
655 | else if (IS_CHAN_B(chan)) |
656 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
657 | else |
658 | return(AH_FALSE); |
659 | |
660 | numChannels = pRawDataset->numChannels; |
661 | data = pRawDataset->pDataPerChannel; |
662 | |
663 | /* Make sure the channel is in the range of the TP values |
664 | * (freq piers) |
665 | */ |
666 | if (numChannels < 1) |
667 | return(AH_FALSE); |
668 | |
669 | if ((chan->channel < data[0].channelValue) || |
670 | (chan->channel > data[numChannels-1].channelValue)) { |
671 | if (chan->channel < data[0].channelValue) { |
672 | *maxPow = ar2413GetMaxPower(ah, &data[0]); |
673 | *minPow = ar2413GetMinPower(ah, &data[0]); |
674 | return(AH_TRUE); |
675 | } else { |
676 | *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]); |
677 | *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]); |
678 | return(AH_TRUE); |
679 | } |
680 | } |
681 | |
682 | /* Linearly interpolate the power value now */ |
683 | for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); |
684 | last = i++); |
685 | totalD = data[i].channelValue - data[last].channelValue; |
686 | if (totalD > 0) { |
687 | totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]); |
688 | *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + |
689 | ar2413GetMaxPower(ah, &data[last])*totalD)/totalD); |
690 | totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]); |
691 | *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + |
692 | ar2413GetMinPower(ah, &data[last])*totalD)/totalD); |
693 | return(AH_TRUE); |
694 | } else { |
695 | if (chan->channel == data[i].channelValue) { |
696 | *maxPow = ar2413GetMaxPower(ah, &data[i]); |
697 | *minPow = ar2413GetMinPower(ah, &data[i]); |
698 | return(AH_TRUE); |
699 | } else |
700 | return(AH_FALSE); |
701 | } |
702 | } |
703 | |
704 | /* |
705 | * Free memory for analog bank scratch buffers |
706 | */ |
707 | static void |
708 | ar2413RfDetach(struct ath_hal *ah) |
709 | { |
710 | struct ath_hal_5212 *ahp = AH5212(ah); |
711 | |
712 | HALASSERT(ahp->ah_rfHal != AH_NULL); |
713 | ath_hal_free(ahp->ah_rfHal); |
714 | ahp->ah_rfHal = AH_NULL; |
715 | } |
716 | |
717 | /* |
718 | * Allocate memory for analog bank scratch buffers |
719 | * Scratch Buffer will be reinitialized every reset so no need to zero now |
720 | */ |
721 | static HAL_BOOL |
722 | ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status) |
723 | { |
724 | struct ath_hal_5212 *ahp = AH5212(ah); |
725 | struct ar2413State *priv; |
726 | |
727 | HALASSERT(ah->ah_magic == AR5212_MAGIC); |
728 | |
729 | HALASSERT(ahp->ah_rfHal == AH_NULL); |
730 | priv = ath_hal_malloc(sizeof(struct ar2413State)); |
731 | if (priv == AH_NULL) { |
732 | HALDEBUG(ah, HAL_DEBUG_ANY, |
733 | "%s: cannot allocate private state\n" , __func__); |
734 | *status = HAL_ENOMEM; /* XXX */ |
735 | return AH_FALSE; |
736 | } |
737 | priv->base.rfDetach = ar2413RfDetach; |
738 | priv->base.writeRegs = ar2413WriteRegs; |
739 | priv->base.getRfBank = ar2413GetRfBank; |
740 | priv->base.setChannel = ar2413SetChannel; |
741 | priv->base.setRfRegs = ar2413SetRfRegs; |
742 | priv->base.setPowerTable = ar2413SetPowerTable; |
743 | priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower; |
744 | priv->base.getNfAdjust = ar5212GetNfAdjust; |
745 | |
746 | ahp->ah_pcdacTable = priv->pcdacTable; |
747 | ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); |
748 | ahp->ah_rfHal = &priv->base; |
749 | |
750 | return AH_TRUE; |
751 | } |
752 | |
753 | static HAL_BOOL |
754 | ar2413Probe(struct ath_hal *ah) |
755 | { |
756 | return IS_2413(ah); |
757 | } |
758 | AH_RF(RF2413, ar2413Probe, ar2413RfAttach); |
759 | |