1 | /* $NetBSD: rf_dagdegrd.c,v 1.29 2013/09/15 12:13:56 martin Exp $ */ |
2 | /* |
3 | * Copyright (c) 1995 Carnegie-Mellon University. |
4 | * All rights reserved. |
5 | * |
6 | * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II |
7 | * |
8 | * Permission to use, copy, modify and distribute this software and |
9 | * its documentation is hereby granted, provided that both the copyright |
10 | * notice and this permission notice appear in all copies of the |
11 | * software, derivative works or modified versions, and any portions |
12 | * thereof, and that both notices appear in supporting documentation. |
13 | * |
14 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
15 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND |
16 | * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
17 | * |
18 | * Carnegie Mellon requests users of this software to return to |
19 | * |
20 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
21 | * School of Computer Science |
22 | * Carnegie Mellon University |
23 | * Pittsburgh PA 15213-3890 |
24 | * |
25 | * any improvements or extensions that they make and grant Carnegie the |
26 | * rights to redistribute these changes. |
27 | */ |
28 | |
29 | /* |
30 | * rf_dagdegrd.c |
31 | * |
32 | * code for creating degraded read DAGs |
33 | */ |
34 | |
35 | #include <sys/cdefs.h> |
36 | __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.29 2013/09/15 12:13:56 martin Exp $" ); |
37 | |
38 | #include <dev/raidframe/raidframevar.h> |
39 | |
40 | #include "rf_archs.h" |
41 | #include "rf_raid.h" |
42 | #include "rf_dag.h" |
43 | #include "rf_dagutils.h" |
44 | #include "rf_dagfuncs.h" |
45 | #include "rf_debugMem.h" |
46 | #include "rf_general.h" |
47 | #include "rf_dagdegrd.h" |
48 | #include "rf_map.h" |
49 | |
50 | |
51 | /****************************************************************************** |
52 | * |
53 | * General comments on DAG creation: |
54 | * |
55 | * All DAGs in this file use roll-away error recovery. Each DAG has a single |
56 | * commit node, usually called "Cmt." If an error occurs before the Cmt node |
57 | * is reached, the execution engine will halt forward execution and work |
58 | * backward through the graph, executing the undo functions. Assuming that |
59 | * each node in the graph prior to the Cmt node are undoable and atomic - or - |
60 | * does not make changes to permanent state, the graph will fail atomically. |
61 | * If an error occurs after the Cmt node executes, the engine will roll-forward |
62 | * through the graph, blindly executing nodes until it reaches the end. |
63 | * If a graph reaches the end, it is assumed to have completed successfully. |
64 | * |
65 | * A graph has only 1 Cmt node. |
66 | * |
67 | */ |
68 | |
69 | |
70 | /****************************************************************************** |
71 | * |
72 | * The following wrappers map the standard DAG creation interface to the |
73 | * DAG creation routines. Additionally, these wrappers enable experimentation |
74 | * with new DAG structures by providing an extra level of indirection, allowing |
75 | * the DAG creation routines to be replaced at this single point. |
76 | */ |
77 | |
78 | void |
79 | rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr, |
80 | RF_AccessStripeMap_t *asmap, |
81 | RF_DagHeader_t *dag_h, |
82 | void *bp, |
83 | RF_RaidAccessFlags_t flags, |
84 | RF_AllocListElem_t *allocList) |
85 | { |
86 | rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, |
87 | &rf_xorRecoveryFuncs); |
88 | } |
89 | |
90 | |
91 | /****************************************************************************** |
92 | * |
93 | * DAG creation code begins here |
94 | */ |
95 | |
96 | |
97 | /****************************************************************************** |
98 | * Create a degraded read DAG for RAID level 1 |
99 | * |
100 | * Hdr -> Nil -> R(p/s)d -> Commit -> Trm |
101 | * |
102 | * The "Rd" node reads data from the surviving disk in the mirror pair |
103 | * Rpd - read of primary copy |
104 | * Rsd - read of secondary copy |
105 | * |
106 | * Parameters: raidPtr - description of the physical array |
107 | * asmap - logical & physical addresses for this access |
108 | * bp - buffer ptr (for holding write data) |
109 | * flags - general flags (e.g. disk locking) |
110 | * allocList - list of memory allocated in DAG creation |
111 | *****************************************************************************/ |
112 | |
113 | void |
114 | rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr, |
115 | RF_AccessStripeMap_t *asmap, |
116 | RF_DagHeader_t *dag_h, |
117 | void *bp, |
118 | RF_RaidAccessFlags_t flags, |
119 | RF_AllocListElem_t *allocList) |
120 | { |
121 | RF_DagNode_t *rdNode, *blockNode, *commitNode, *termNode; |
122 | RF_StripeNum_t parityStripeID; |
123 | RF_ReconUnitNum_t which_ru; |
124 | RF_PhysDiskAddr_t *pda; |
125 | int useMirror; |
126 | |
127 | useMirror = 0; |
128 | parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), |
129 | asmap->raidAddress, &which_ru); |
130 | #if RF_DEBUG_DAG |
131 | if (rf_dagDebug) { |
132 | printf("[Creating RAID level 1 degraded read DAG]\n" ); |
133 | } |
134 | #endif |
135 | dag_h->creator = "RaidOneDegradedReadDAG" ; |
136 | /* alloc the Wnd nodes and the Wmir node */ |
137 | if (asmap->numDataFailed == 0) |
138 | useMirror = RF_FALSE; |
139 | else |
140 | useMirror = RF_TRUE; |
141 | |
142 | /* total number of nodes = 1 + (block + commit + terminator) */ |
143 | |
144 | rdNode = rf_AllocDAGNode(); |
145 | rdNode->list_next = dag_h->nodes; |
146 | dag_h->nodes = rdNode; |
147 | |
148 | blockNode = rf_AllocDAGNode(); |
149 | blockNode->list_next = dag_h->nodes; |
150 | dag_h->nodes = blockNode; |
151 | |
152 | commitNode = rf_AllocDAGNode(); |
153 | commitNode->list_next = dag_h->nodes; |
154 | dag_h->nodes = commitNode; |
155 | |
156 | termNode = rf_AllocDAGNode(); |
157 | termNode->list_next = dag_h->nodes; |
158 | dag_h->nodes = termNode; |
159 | |
160 | /* this dag can not commit until the commit node is reached. errors |
161 | * prior to the commit point imply the dag has failed and must be |
162 | * retried */ |
163 | dag_h->numCommitNodes = 1; |
164 | dag_h->numCommits = 0; |
165 | dag_h->numSuccedents = 1; |
166 | |
167 | /* initialize the block, commit, and terminator nodes */ |
168 | rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, |
169 | NULL, 1, 0, 0, 0, dag_h, "Nil" , allocList); |
170 | rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, |
171 | NULL, 1, 1, 0, 0, dag_h, "Cmt" , allocList); |
172 | rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, |
173 | NULL, 0, 1, 0, 0, dag_h, "Trm" , allocList); |
174 | |
175 | pda = asmap->physInfo; |
176 | RF_ASSERT(pda != NULL); |
177 | /* parityInfo must describe entire parity unit */ |
178 | RF_ASSERT(asmap->parityInfo->next == NULL); |
179 | |
180 | /* initialize the data node */ |
181 | if (!useMirror) { |
182 | /* read primary copy of data */ |
183 | rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, |
184 | rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd" , allocList); |
185 | rdNode->params[0].p = pda; |
186 | rdNode->params[1].p = pda->bufPtr; |
187 | rdNode->params[2].v = parityStripeID; |
188 | rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, |
189 | which_ru); |
190 | } else { |
191 | /* read secondary copy of data */ |
192 | rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, |
193 | rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd" , allocList); |
194 | rdNode->params[0].p = asmap->parityInfo; |
195 | rdNode->params[1].p = pda->bufPtr; |
196 | rdNode->params[2].v = parityStripeID; |
197 | rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, |
198 | which_ru); |
199 | } |
200 | |
201 | /* connect header to block node */ |
202 | RF_ASSERT(dag_h->numSuccedents == 1); |
203 | RF_ASSERT(blockNode->numAntecedents == 0); |
204 | dag_h->succedents[0] = blockNode; |
205 | |
206 | /* connect block node to rdnode */ |
207 | RF_ASSERT(blockNode->numSuccedents == 1); |
208 | RF_ASSERT(rdNode->numAntecedents == 1); |
209 | blockNode->succedents[0] = rdNode; |
210 | rdNode->antecedents[0] = blockNode; |
211 | rdNode->antType[0] = rf_control; |
212 | |
213 | /* connect rdnode to commit node */ |
214 | RF_ASSERT(rdNode->numSuccedents == 1); |
215 | RF_ASSERT(commitNode->numAntecedents == 1); |
216 | rdNode->succedents[0] = commitNode; |
217 | commitNode->antecedents[0] = rdNode; |
218 | commitNode->antType[0] = rf_control; |
219 | |
220 | /* connect commit node to terminator */ |
221 | RF_ASSERT(commitNode->numSuccedents == 1); |
222 | RF_ASSERT(termNode->numAntecedents == 1); |
223 | RF_ASSERT(termNode->numSuccedents == 0); |
224 | commitNode->succedents[0] = termNode; |
225 | termNode->antecedents[0] = commitNode; |
226 | termNode->antType[0] = rf_control; |
227 | } |
228 | |
229 | |
230 | |
231 | /****************************************************************************** |
232 | * |
233 | * creates a DAG to perform a degraded-mode read of data within one stripe. |
234 | * This DAG is as follows: |
235 | * |
236 | * Hdr -> Block -> Rud -> Xor -> Cmt -> T |
237 | * -> Rrd -> |
238 | * -> Rp --> |
239 | * |
240 | * Each R node is a successor of the L node |
241 | * One successor arc from each R node goes to C, and the other to X |
242 | * There is one Rud for each chunk of surviving user data requested by the |
243 | * user, and one Rrd for each chunk of surviving user data _not_ being read by |
244 | * the user |
245 | * R = read, ud = user data, rd = recovery (surviving) data, p = parity |
246 | * X = XOR, C = Commit, T = terminate |
247 | * |
248 | * The block node guarantees a single source node. |
249 | * |
250 | * Note: The target buffer for the XOR node is set to the actual user buffer |
251 | * where the failed data is supposed to end up. This buffer is zero'd by the |
252 | * code here. Thus, if you create a degraded read dag, use it, and then |
253 | * re-use, you have to be sure to zero the target buffer prior to the re-use. |
254 | * |
255 | * The recfunc argument at the end specifies the name and function used for |
256 | * the redundancy |
257 | * recovery function. |
258 | * |
259 | *****************************************************************************/ |
260 | |
261 | void |
262 | rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, |
263 | RF_DagHeader_t *dag_h, void *bp, |
264 | RF_RaidAccessFlags_t flags, |
265 | RF_AllocListElem_t *allocList, |
266 | const RF_RedFuncs_t *recFunc) |
267 | { |
268 | RF_DagNode_t *rudNodes, *rrdNodes, *xorNode, *blockNode; |
269 | RF_DagNode_t *commitNode, *rpNode, *termNode; |
270 | RF_DagNode_t *tmpNode, *tmprudNode, *tmprrdNode; |
271 | int nRrdNodes, nRudNodes, nXorBufs, i; |
272 | int j, paramNum; |
273 | RF_SectorCount_t sectorsPerSU; |
274 | RF_ReconUnitNum_t which_ru; |
275 | char overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */ |
276 | RF_AccessStripeMapHeader_t *new_asm_h[2]; |
277 | RF_PhysDiskAddr_t *pda, *parityPDA; |
278 | RF_StripeNum_t parityStripeID; |
279 | RF_PhysDiskAddr_t *failedPDA; |
280 | RF_RaidLayout_t *layoutPtr; |
281 | char *rpBuf; |
282 | |
283 | layoutPtr = &(raidPtr->Layout); |
284 | /* failedPDA points to the pda within the asm that targets the failed |
285 | * disk */ |
286 | failedPDA = asmap->failedPDAs[0]; |
287 | parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, |
288 | asmap->raidAddress, &which_ru); |
289 | sectorsPerSU = layoutPtr->sectorsPerStripeUnit; |
290 | |
291 | #if RF_DEBUG_DAG |
292 | if (rf_dagDebug) { |
293 | printf("[Creating degraded read DAG]\n" ); |
294 | } |
295 | #endif |
296 | RF_ASSERT(asmap->numDataFailed == 1); |
297 | dag_h->creator = "DegradedReadDAG" ; |
298 | |
299 | /* |
300 | * generate two ASMs identifying the surviving data we need |
301 | * in order to recover the lost data |
302 | */ |
303 | |
304 | /* overlappingPDAs array must be zero'd */ |
305 | memset(overlappingPDAs, 0, RF_MAXCOL); |
306 | rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs, |
307 | &rpBuf, overlappingPDAs, allocList); |
308 | |
309 | /* |
310 | * create all the nodes at once |
311 | * |
312 | * -1 because no access is generated for the failed pda |
313 | */ |
314 | nRudNodes = asmap->numStripeUnitsAccessed - 1; |
315 | nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) + |
316 | ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0); |
317 | |
318 | blockNode = rf_AllocDAGNode(); |
319 | blockNode->list_next = dag_h->nodes; |
320 | dag_h->nodes = blockNode; |
321 | |
322 | commitNode = rf_AllocDAGNode(); |
323 | commitNode->list_next = dag_h->nodes; |
324 | dag_h->nodes = commitNode; |
325 | |
326 | xorNode = rf_AllocDAGNode(); |
327 | xorNode->list_next = dag_h->nodes; |
328 | dag_h->nodes = xorNode; |
329 | |
330 | rpNode = rf_AllocDAGNode(); |
331 | rpNode->list_next = dag_h->nodes; |
332 | dag_h->nodes = rpNode; |
333 | |
334 | termNode = rf_AllocDAGNode(); |
335 | termNode->list_next = dag_h->nodes; |
336 | dag_h->nodes = termNode; |
337 | |
338 | for (i = 0; i < nRudNodes; i++) { |
339 | tmpNode = rf_AllocDAGNode(); |
340 | tmpNode->list_next = dag_h->nodes; |
341 | dag_h->nodes = tmpNode; |
342 | } |
343 | rudNodes = dag_h->nodes; |
344 | |
345 | for (i = 0; i < nRrdNodes; i++) { |
346 | tmpNode = rf_AllocDAGNode(); |
347 | tmpNode->list_next = dag_h->nodes; |
348 | dag_h->nodes = tmpNode; |
349 | } |
350 | rrdNodes = dag_h->nodes; |
351 | |
352 | /* initialize nodes */ |
353 | dag_h->numCommitNodes = 1; |
354 | dag_h->numCommits = 0; |
355 | /* this dag can not commit until the commit node is reached errors |
356 | * prior to the commit point imply the dag has failed */ |
357 | dag_h->numSuccedents = 1; |
358 | |
359 | rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, |
360 | NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil" , allocList); |
361 | rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, |
362 | NULL, 1, 1, 0, 0, dag_h, "Cmt" , allocList); |
363 | rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, |
364 | NULL, 0, 1, 0, 0, dag_h, "Trm" , allocList); |
365 | rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc, |
366 | NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h, |
367 | recFunc->SimpleName, allocList); |
368 | |
369 | /* fill in the Rud nodes */ |
370 | tmprudNode = rudNodes; |
371 | for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) { |
372 | if (pda == failedPDA) { |
373 | i--; |
374 | continue; |
375 | } |
376 | rf_InitNode(tmprudNode, rf_wait, RF_FALSE, rf_DiskReadFunc, |
377 | rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, |
378 | "Rud" , allocList); |
379 | RF_ASSERT(pda); |
380 | tmprudNode->params[0].p = pda; |
381 | tmprudNode->params[1].p = pda->bufPtr; |
382 | tmprudNode->params[2].v = parityStripeID; |
383 | tmprudNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
384 | tmprudNode = tmprudNode->list_next; |
385 | } |
386 | |
387 | /* fill in the Rrd nodes */ |
388 | i = 0; |
389 | tmprrdNode = rrdNodes; |
390 | if (new_asm_h[0]) { |
391 | for (pda = new_asm_h[0]->stripeMap->physInfo; |
392 | i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed; |
393 | i++, pda = pda->next) { |
394 | rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, |
395 | rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, |
396 | dag_h, "Rrd" , allocList); |
397 | RF_ASSERT(pda); |
398 | tmprrdNode->params[0].p = pda; |
399 | tmprrdNode->params[1].p = pda->bufPtr; |
400 | tmprrdNode->params[2].v = parityStripeID; |
401 | tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
402 | tmprrdNode = tmprrdNode->list_next; |
403 | } |
404 | } |
405 | if (new_asm_h[1]) { |
406 | /* tmprrdNode = rrdNodes; */ /* don't set this here -- old code was using i+j, which means |
407 | we need to just continue using tmprrdNode for the next 'j' elements. */ |
408 | for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo; |
409 | j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed; |
410 | j++, pda = pda->next) { |
411 | rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, |
412 | rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, |
413 | dag_h, "Rrd" , allocList); |
414 | RF_ASSERT(pda); |
415 | tmprrdNode->params[0].p = pda; |
416 | tmprrdNode->params[1].p = pda->bufPtr; |
417 | tmprrdNode->params[2].v = parityStripeID; |
418 | tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
419 | tmprrdNode = tmprrdNode->list_next; |
420 | } |
421 | } |
422 | /* make a PDA for the parity unit */ |
423 | parityPDA = rf_AllocPhysDiskAddr(); |
424 | parityPDA->next = dag_h->pda_cleanup_list; |
425 | dag_h->pda_cleanup_list = parityPDA; |
426 | parityPDA->col = asmap->parityInfo->col; |
427 | parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU) |
428 | * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); |
429 | parityPDA->numSector = failedPDA->numSector; |
430 | |
431 | /* initialize the Rp node */ |
432 | rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, |
433 | rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp " , allocList); |
434 | rpNode->params[0].p = parityPDA; |
435 | rpNode->params[1].p = rpBuf; |
436 | rpNode->params[2].v = parityStripeID; |
437 | rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
438 | |
439 | /* |
440 | * the last and nastiest step is to assign all |
441 | * the parameters of the Xor node |
442 | */ |
443 | paramNum = 0; |
444 | tmprrdNode = rrdNodes; |
445 | for (i = 0; i < nRrdNodes; i++) { |
446 | /* all the Rrd nodes need to be xored together */ |
447 | xorNode->params[paramNum++] = tmprrdNode->params[0]; |
448 | xorNode->params[paramNum++] = tmprrdNode->params[1]; |
449 | tmprrdNode = tmprrdNode->list_next; |
450 | } |
451 | tmprudNode = rudNodes; |
452 | for (i = 0; i < nRudNodes; i++) { |
453 | /* any Rud nodes that overlap the failed access need to be |
454 | * xored in */ |
455 | if (overlappingPDAs[i]) { |
456 | pda = rf_AllocPhysDiskAddr(); |
457 | memcpy((char *) pda, (char *) tmprudNode->params[0].p, sizeof(RF_PhysDiskAddr_t)); |
458 | /* add it into the pda_cleanup_list *after* the copy, TYVM */ |
459 | pda->next = dag_h->pda_cleanup_list; |
460 | dag_h->pda_cleanup_list = pda; |
461 | rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0); |
462 | xorNode->params[paramNum++].p = pda; |
463 | xorNode->params[paramNum++].p = pda->bufPtr; |
464 | } |
465 | tmprudNode = tmprudNode->list_next; |
466 | } |
467 | |
468 | /* install parity pda as last set of params to be xor'd */ |
469 | xorNode->params[paramNum++].p = parityPDA; |
470 | xorNode->params[paramNum++].p = rpBuf; |
471 | |
472 | /* |
473 | * the last 2 params to the recovery xor node are |
474 | * the failed PDA and the raidPtr |
475 | */ |
476 | xorNode->params[paramNum++].p = failedPDA; |
477 | xorNode->params[paramNum++].p = raidPtr; |
478 | RF_ASSERT(paramNum == 2 * nXorBufs + 2); |
479 | |
480 | /* |
481 | * The xor node uses results[0] as the target buffer. |
482 | * Set pointer and zero the buffer. In the kernel, this |
483 | * may be a user buffer in which case we have to remap it. |
484 | */ |
485 | xorNode->results[0] = failedPDA->bufPtr; |
486 | memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr, |
487 | failedPDA->numSector)); |
488 | |
489 | /* connect nodes to form graph */ |
490 | /* connect the header to the block node */ |
491 | RF_ASSERT(dag_h->numSuccedents == 1); |
492 | RF_ASSERT(blockNode->numAntecedents == 0); |
493 | dag_h->succedents[0] = blockNode; |
494 | |
495 | /* connect the block node to the read nodes */ |
496 | RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes)); |
497 | RF_ASSERT(rpNode->numAntecedents == 1); |
498 | blockNode->succedents[0] = rpNode; |
499 | rpNode->antecedents[0] = blockNode; |
500 | rpNode->antType[0] = rf_control; |
501 | tmprrdNode = rrdNodes; |
502 | for (i = 0; i < nRrdNodes; i++) { |
503 | RF_ASSERT(tmprrdNode->numSuccedents == 1); |
504 | blockNode->succedents[1 + i] = tmprrdNode; |
505 | tmprrdNode->antecedents[0] = blockNode; |
506 | tmprrdNode->antType[0] = rf_control; |
507 | tmprrdNode = tmprrdNode->list_next; |
508 | } |
509 | tmprudNode = rudNodes; |
510 | for (i = 0; i < nRudNodes; i++) { |
511 | RF_ASSERT(tmprudNode->numSuccedents == 1); |
512 | blockNode->succedents[1 + nRrdNodes + i] = tmprudNode; |
513 | tmprudNode->antecedents[0] = blockNode; |
514 | tmprudNode->antType[0] = rf_control; |
515 | tmprudNode = tmprudNode->list_next; |
516 | } |
517 | |
518 | /* connect the read nodes to the xor node */ |
519 | RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes)); |
520 | RF_ASSERT(rpNode->numSuccedents == 1); |
521 | rpNode->succedents[0] = xorNode; |
522 | xorNode->antecedents[0] = rpNode; |
523 | xorNode->antType[0] = rf_trueData; |
524 | tmprrdNode = rrdNodes; |
525 | for (i = 0; i < nRrdNodes; i++) { |
526 | RF_ASSERT(tmprrdNode->numSuccedents == 1); |
527 | tmprrdNode->succedents[0] = xorNode; |
528 | xorNode->antecedents[1 + i] = tmprrdNode; |
529 | xorNode->antType[1 + i] = rf_trueData; |
530 | tmprrdNode = tmprrdNode->list_next; |
531 | } |
532 | tmprudNode = rudNodes; |
533 | for (i = 0; i < nRudNodes; i++) { |
534 | RF_ASSERT(tmprudNode->numSuccedents == 1); |
535 | tmprudNode->succedents[0] = xorNode; |
536 | xorNode->antecedents[1 + nRrdNodes + i] = tmprudNode; |
537 | xorNode->antType[1 + nRrdNodes + i] = rf_trueData; |
538 | tmprudNode = tmprudNode->list_next; |
539 | } |
540 | |
541 | /* connect the xor node to the commit node */ |
542 | RF_ASSERT(xorNode->numSuccedents == 1); |
543 | RF_ASSERT(commitNode->numAntecedents == 1); |
544 | xorNode->succedents[0] = commitNode; |
545 | commitNode->antecedents[0] = xorNode; |
546 | commitNode->antType[0] = rf_control; |
547 | |
548 | /* connect the termNode to the commit node */ |
549 | RF_ASSERT(commitNode->numSuccedents == 1); |
550 | RF_ASSERT(termNode->numAntecedents == 1); |
551 | RF_ASSERT(termNode->numSuccedents == 0); |
552 | commitNode->succedents[0] = termNode; |
553 | termNode->antType[0] = rf_control; |
554 | termNode->antecedents[0] = commitNode; |
555 | } |
556 | |
557 | #if (RF_INCLUDE_CHAINDECLUSTER > 0) |
558 | /****************************************************************************** |
559 | * Create a degraded read DAG for Chained Declustering |
560 | * |
561 | * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm |
562 | * |
563 | * The "Rd" node reads data from the surviving disk in the mirror pair |
564 | * Rpd - read of primary copy |
565 | * Rsd - read of secondary copy |
566 | * |
567 | * Parameters: raidPtr - description of the physical array |
568 | * asmap - logical & physical addresses for this access |
569 | * bp - buffer ptr (for holding write data) |
570 | * flags - general flags (e.g. disk locking) |
571 | * allocList - list of memory allocated in DAG creation |
572 | *****************************************************************************/ |
573 | |
574 | void |
575 | rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, |
576 | RF_DagHeader_t *dag_h, void *bp, |
577 | RF_RaidAccessFlags_t flags, |
578 | RF_AllocListElem_t *allocList) |
579 | { |
580 | RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode; |
581 | RF_StripeNum_t parityStripeID; |
582 | int useMirror, i, shiftable; |
583 | RF_ReconUnitNum_t which_ru; |
584 | RF_PhysDiskAddr_t *pda; |
585 | |
586 | if ((asmap->numDataFailed + asmap->numParityFailed) == 0) { |
587 | shiftable = RF_TRUE; |
588 | } else { |
589 | shiftable = RF_FALSE; |
590 | } |
591 | useMirror = 0; |
592 | parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), |
593 | asmap->raidAddress, &which_ru); |
594 | |
595 | #if RF_DEBUG_DAG |
596 | if (rf_dagDebug) { |
597 | printf("[Creating RAID C degraded read DAG]\n" ); |
598 | } |
599 | #endif |
600 | dag_h->creator = "RaidCDegradedReadDAG" ; |
601 | /* alloc the Wnd nodes and the Wmir node */ |
602 | if (asmap->numDataFailed == 0) |
603 | useMirror = RF_FALSE; |
604 | else |
605 | useMirror = RF_TRUE; |
606 | |
607 | /* total number of nodes = 1 + (block + commit + terminator) */ |
608 | RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); |
609 | i = 0; |
610 | rdNode = &nodes[i]; |
611 | i++; |
612 | blockNode = &nodes[i]; |
613 | i++; |
614 | commitNode = &nodes[i]; |
615 | i++; |
616 | termNode = &nodes[i]; |
617 | i++; |
618 | |
619 | /* |
620 | * This dag can not commit until the commit node is reached. |
621 | * Errors prior to the commit point imply the dag has failed |
622 | * and must be retried. |
623 | */ |
624 | dag_h->numCommitNodes = 1; |
625 | dag_h->numCommits = 0; |
626 | dag_h->numSuccedents = 1; |
627 | |
628 | /* initialize the block, commit, and terminator nodes */ |
629 | rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, |
630 | NULL, 1, 0, 0, 0, dag_h, "Nil" , allocList); |
631 | rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, |
632 | NULL, 1, 1, 0, 0, dag_h, "Cmt" , allocList); |
633 | rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, |
634 | NULL, 0, 1, 0, 0, dag_h, "Trm" , allocList); |
635 | |
636 | pda = asmap->physInfo; |
637 | RF_ASSERT(pda != NULL); |
638 | /* parityInfo must describe entire parity unit */ |
639 | RF_ASSERT(asmap->parityInfo->next == NULL); |
640 | |
641 | /* initialize the data node */ |
642 | if (!useMirror) { |
643 | rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, |
644 | rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd" , allocList); |
645 | if (shiftable && rf_compute_workload_shift(raidPtr, pda)) { |
646 | /* shift this read to the next disk in line */ |
647 | rdNode->params[0].p = asmap->parityInfo; |
648 | rdNode->params[1].p = pda->bufPtr; |
649 | rdNode->params[2].v = parityStripeID; |
650 | rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
651 | } else { |
652 | /* read primary copy */ |
653 | rdNode->params[0].p = pda; |
654 | rdNode->params[1].p = pda->bufPtr; |
655 | rdNode->params[2].v = parityStripeID; |
656 | rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
657 | } |
658 | } else { |
659 | /* read secondary copy of data */ |
660 | rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, |
661 | rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd" , allocList); |
662 | rdNode->params[0].p = asmap->parityInfo; |
663 | rdNode->params[1].p = pda->bufPtr; |
664 | rdNode->params[2].v = parityStripeID; |
665 | rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
666 | } |
667 | |
668 | /* connect header to block node */ |
669 | RF_ASSERT(dag_h->numSuccedents == 1); |
670 | RF_ASSERT(blockNode->numAntecedents == 0); |
671 | dag_h->succedents[0] = blockNode; |
672 | |
673 | /* connect block node to rdnode */ |
674 | RF_ASSERT(blockNode->numSuccedents == 1); |
675 | RF_ASSERT(rdNode->numAntecedents == 1); |
676 | blockNode->succedents[0] = rdNode; |
677 | rdNode->antecedents[0] = blockNode; |
678 | rdNode->antType[0] = rf_control; |
679 | |
680 | /* connect rdnode to commit node */ |
681 | RF_ASSERT(rdNode->numSuccedents == 1); |
682 | RF_ASSERT(commitNode->numAntecedents == 1); |
683 | rdNode->succedents[0] = commitNode; |
684 | commitNode->antecedents[0] = rdNode; |
685 | commitNode->antType[0] = rf_control; |
686 | |
687 | /* connect commit node to terminator */ |
688 | RF_ASSERT(commitNode->numSuccedents == 1); |
689 | RF_ASSERT(termNode->numAntecedents == 1); |
690 | RF_ASSERT(termNode->numSuccedents == 0); |
691 | commitNode->succedents[0] = termNode; |
692 | termNode->antecedents[0] = commitNode; |
693 | termNode->antType[0] = rf_control; |
694 | } |
695 | #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */ |
696 | |
697 | #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) |
698 | /* |
699 | * XXX move this elsewhere? |
700 | */ |
701 | void |
702 | rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, |
703 | RF_PhysDiskAddr_t **pdap, int *nNodep, |
704 | RF_PhysDiskAddr_t **pqpdap, int *nPQNodep, |
705 | RF_AllocListElem_t *allocList) |
706 | { |
707 | RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); |
708 | int PDAPerDisk, i; |
709 | RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; |
710 | int numDataCol = layoutPtr->numDataCol; |
711 | int state; |
712 | RF_SectorNum_t suoff, suend; |
713 | unsigned firstDataCol, napdas, count; |
714 | RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0; |
715 | RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1]; |
716 | RF_PhysDiskAddr_t *pda_p; |
717 | RF_PhysDiskAddr_t *phys_p; |
718 | RF_RaidAddr_t sosAddr; |
719 | |
720 | /* determine how many pda's we will have to generate per unaccess |
721 | * stripe. If there is only one failed data unit, it is one; if two, |
722 | * possibly two, depending whether they overlap. */ |
723 | |
724 | fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector); |
725 | fone_end = fone_start + fone->numSector; |
726 | |
727 | #define CONS_PDA(if,start,num) \ |
728 | pda_p->col = asmap->if->col; \ |
729 | pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \ |
730 | pda_p->numSector = num; \ |
731 | pda_p->next = NULL; \ |
732 | RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList) |
733 | |
734 | if (asmap->numDataFailed == 1) { |
735 | PDAPerDisk = 1; |
736 | state = 1; |
737 | RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); |
738 | pda_p = *pqpdap; |
739 | /* build p */ |
740 | CONS_PDA(parityInfo, fone_start, fone->numSector); |
741 | pda_p->type = RF_PDA_TYPE_PARITY; |
742 | pda_p++; |
743 | /* build q */ |
744 | CONS_PDA(qInfo, fone_start, fone->numSector); |
745 | pda_p->type = RF_PDA_TYPE_Q; |
746 | } else { |
747 | ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector); |
748 | ftwo_end = ftwo_start + ftwo->numSector; |
749 | if (fone->numSector + ftwo->numSector > secPerSU) { |
750 | PDAPerDisk = 1; |
751 | state = 2; |
752 | RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); |
753 | pda_p = *pqpdap; |
754 | CONS_PDA(parityInfo, 0, secPerSU); |
755 | pda_p->type = RF_PDA_TYPE_PARITY; |
756 | pda_p++; |
757 | CONS_PDA(qInfo, 0, secPerSU); |
758 | pda_p->type = RF_PDA_TYPE_Q; |
759 | } else { |
760 | PDAPerDisk = 2; |
761 | state = 3; |
762 | /* four of them, fone, then ftwo */ |
763 | RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); |
764 | pda_p = *pqpdap; |
765 | CONS_PDA(parityInfo, fone_start, fone->numSector); |
766 | pda_p->type = RF_PDA_TYPE_PARITY; |
767 | pda_p++; |
768 | CONS_PDA(qInfo, fone_start, fone->numSector); |
769 | pda_p->type = RF_PDA_TYPE_Q; |
770 | pda_p++; |
771 | CONS_PDA(parityInfo, ftwo_start, ftwo->numSector); |
772 | pda_p->type = RF_PDA_TYPE_PARITY; |
773 | pda_p++; |
774 | CONS_PDA(qInfo, ftwo_start, ftwo->numSector); |
775 | pda_p->type = RF_PDA_TYPE_Q; |
776 | } |
777 | } |
778 | /* figure out number of nonaccessed pda */ |
779 | napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0)); |
780 | *nPQNodep = PDAPerDisk; |
781 | |
782 | /* sweep over the over accessed pda's, figuring out the number of |
783 | * additional pda's to generate. Of course, skip the failed ones */ |
784 | |
785 | count = 0; |
786 | for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) { |
787 | if ((pda_p == fone) || (pda_p == ftwo)) |
788 | continue; |
789 | suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector); |
790 | suend = suoff + pda_p->numSector; |
791 | switch (state) { |
792 | case 1: /* one failed PDA to overlap */ |
793 | /* if a PDA doesn't contain the failed unit, it can |
794 | * only miss the start or end, not both */ |
795 | if ((suoff > fone_start) || (suend < fone_end)) |
796 | count++; |
797 | break; |
798 | case 2: /* whole stripe */ |
799 | if (suoff) /* leak at begining */ |
800 | count++; |
801 | if (suend < numDataCol) /* leak at end */ |
802 | count++; |
803 | break; |
804 | case 3: /* two disjoint units */ |
805 | if ((suoff > fone_start) || (suend < fone_end)) |
806 | count++; |
807 | if ((suoff > ftwo_start) || (suend < ftwo_end)) |
808 | count++; |
809 | break; |
810 | default: |
811 | RF_PANIC(); |
812 | } |
813 | } |
814 | |
815 | napdas += count; |
816 | *nNodep = napdas; |
817 | if (napdas == 0) |
818 | return; /* short circuit */ |
819 | |
820 | /* allocate up our list of pda's */ |
821 | |
822 | RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t), |
823 | (RF_PhysDiskAddr_t *), allocList); |
824 | *pdap = pda_p; |
825 | |
826 | /* linkem together */ |
827 | for (i = 0; i < (napdas - 1); i++) |
828 | pda_p[i].next = pda_p + (i + 1); |
829 | |
830 | /* march through the one's up to the first accessed disk */ |
831 | firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol; |
832 | sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); |
833 | for (i = 0; i < firstDataCol; i++) { |
834 | if ((pda_p - (*pdap)) == napdas) |
835 | continue; |
836 | pda_p->type = RF_PDA_TYPE_DATA; |
837 | pda_p->raidAddress = sosAddr + (i * secPerSU); |
838 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
839 | /* skip over dead disks */ |
840 | if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status)) |
841 | continue; |
842 | switch (state) { |
843 | case 1: /* fone */ |
844 | pda_p->numSector = fone->numSector; |
845 | pda_p->raidAddress += fone_start; |
846 | pda_p->startSector += fone_start; |
847 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
848 | break; |
849 | case 2: /* full stripe */ |
850 | pda_p->numSector = secPerSU; |
851 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); |
852 | break; |
853 | case 3: /* two slabs */ |
854 | pda_p->numSector = fone->numSector; |
855 | pda_p->raidAddress += fone_start; |
856 | pda_p->startSector += fone_start; |
857 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
858 | pda_p++; |
859 | pda_p->type = RF_PDA_TYPE_DATA; |
860 | pda_p->raidAddress = sosAddr + (i * secPerSU); |
861 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
862 | pda_p->numSector = ftwo->numSector; |
863 | pda_p->raidAddress += ftwo_start; |
864 | pda_p->startSector += ftwo_start; |
865 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
866 | break; |
867 | default: |
868 | RF_PANIC(); |
869 | } |
870 | pda_p++; |
871 | } |
872 | |
873 | /* march through the touched stripe units */ |
874 | for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) { |
875 | if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1])) |
876 | continue; |
877 | suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector); |
878 | suend = suoff + phys_p->numSector; |
879 | switch (state) { |
880 | case 1: /* single buffer */ |
881 | if (suoff > fone_start) { |
882 | RF_ASSERT(suend >= fone_end); |
883 | /* The data read starts after the mapped |
884 | * access, snip off the begining */ |
885 | pda_p->numSector = suoff - fone_start; |
886 | pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start; |
887 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
888 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
889 | pda_p++; |
890 | } |
891 | if (suend < fone_end) { |
892 | RF_ASSERT(suoff <= fone_start); |
893 | /* The data read stops before the end of the |
894 | * failed access, extend */ |
895 | pda_p->numSector = fone_end - suend; |
896 | pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ |
897 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
898 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
899 | pda_p++; |
900 | } |
901 | break; |
902 | case 2: /* whole stripe unit */ |
903 | RF_ASSERT((suoff == 0) || (suend == secPerSU)); |
904 | if (suend < secPerSU) { /* short read, snip from end |
905 | * on */ |
906 | pda_p->numSector = secPerSU - suend; |
907 | pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ |
908 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
909 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
910 | pda_p++; |
911 | } else |
912 | if (suoff > 0) { /* short at front */ |
913 | pda_p->numSector = suoff; |
914 | pda_p->raidAddress = sosAddr + (i * secPerSU); |
915 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
916 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
917 | pda_p++; |
918 | } |
919 | break; |
920 | case 3: /* two nonoverlapping failures */ |
921 | if ((suoff > fone_start) || (suend < fone_end)) { |
922 | if (suoff > fone_start) { |
923 | RF_ASSERT(suend >= fone_end); |
924 | /* The data read starts after the |
925 | * mapped access, snip off the |
926 | * begining */ |
927 | pda_p->numSector = suoff - fone_start; |
928 | pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start; |
929 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
930 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
931 | pda_p++; |
932 | } |
933 | if (suend < fone_end) { |
934 | RF_ASSERT(suoff <= fone_start); |
935 | /* The data read stops before the end |
936 | * of the failed access, extend */ |
937 | pda_p->numSector = fone_end - suend; |
938 | pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ |
939 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
940 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
941 | pda_p++; |
942 | } |
943 | } |
944 | if ((suoff > ftwo_start) || (suend < ftwo_end)) { |
945 | if (suoff > ftwo_start) { |
946 | RF_ASSERT(suend >= ftwo_end); |
947 | /* The data read starts after the |
948 | * mapped access, snip off the |
949 | * begining */ |
950 | pda_p->numSector = suoff - ftwo_start; |
951 | pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start; |
952 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
953 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
954 | pda_p++; |
955 | } |
956 | if (suend < ftwo_end) { |
957 | RF_ASSERT(suoff <= ftwo_start); |
958 | /* The data read stops before the end |
959 | * of the failed access, extend */ |
960 | pda_p->numSector = ftwo_end - suend; |
961 | pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ |
962 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
963 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
964 | pda_p++; |
965 | } |
966 | } |
967 | break; |
968 | default: |
969 | RF_PANIC(); |
970 | } |
971 | } |
972 | |
973 | /* after the last accessed disk */ |
974 | for (; i < numDataCol; i++) { |
975 | if ((pda_p - (*pdap)) == napdas) |
976 | continue; |
977 | pda_p->type = RF_PDA_TYPE_DATA; |
978 | pda_p->raidAddress = sosAddr + (i * secPerSU); |
979 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
980 | /* skip over dead disks */ |
981 | if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status)) |
982 | continue; |
983 | switch (state) { |
984 | case 1: /* fone */ |
985 | pda_p->numSector = fone->numSector; |
986 | pda_p->raidAddress += fone_start; |
987 | pda_p->startSector += fone_start; |
988 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
989 | break; |
990 | case 2: /* full stripe */ |
991 | pda_p->numSector = secPerSU; |
992 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); |
993 | break; |
994 | case 3: /* two slabs */ |
995 | pda_p->numSector = fone->numSector; |
996 | pda_p->raidAddress += fone_start; |
997 | pda_p->startSector += fone_start; |
998 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
999 | pda_p++; |
1000 | pda_p->type = RF_PDA_TYPE_DATA; |
1001 | pda_p->raidAddress = sosAddr + (i * secPerSU); |
1002 | (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0); |
1003 | pda_p->numSector = ftwo->numSector; |
1004 | pda_p->raidAddress += ftwo_start; |
1005 | pda_p->startSector += ftwo_start; |
1006 | RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); |
1007 | break; |
1008 | default: |
1009 | RF_PANIC(); |
1010 | } |
1011 | pda_p++; |
1012 | } |
1013 | |
1014 | RF_ASSERT(pda_p - *pdap == napdas); |
1015 | return; |
1016 | } |
1017 | #define INIT_DISK_NODE(node,name) \ |
1018 | rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \ |
1019 | (node)->succedents[0] = unblockNode; \ |
1020 | (node)->succedents[1] = recoveryNode; \ |
1021 | (node)->antecedents[0] = blockNode; \ |
1022 | (node)->antType[0] = rf_control |
1023 | |
1024 | #define DISK_NODE_PARAMS(_node_,_p_) \ |
1025 | (_node_).params[0].p = _p_ ; \ |
1026 | (_node_).params[1].p = (_p_)->bufPtr; \ |
1027 | (_node_).params[2].v = parityStripeID; \ |
1028 | (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru) |
1029 | |
1030 | void |
1031 | rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, |
1032 | RF_DagHeader_t *dag_h, void *bp, |
1033 | RF_RaidAccessFlags_t flags, |
1034 | RF_AllocListElem_t *allocList, |
1035 | const char *redundantReadNodeName, |
1036 | const char *recoveryNodeName, |
1037 | int (*recovFunc) (RF_DagNode_t *)) |
1038 | { |
1039 | RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); |
1040 | RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode, |
1041 | *unblockNode, *rpNodes, *rqNodes, *termNode; |
1042 | RF_PhysDiskAddr_t *pda, *pqPDAs; |
1043 | RF_PhysDiskAddr_t *npdas; |
1044 | int nNodes, nRrdNodes, nRudNodes, i; |
1045 | RF_ReconUnitNum_t which_ru; |
1046 | int nReadNodes, nPQNodes; |
1047 | RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0]; |
1048 | RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1]; |
1049 | RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru); |
1050 | |
1051 | #if RF_DEBUG_DAG |
1052 | if (rf_dagDebug) |
1053 | printf("[Creating Double Degraded Read DAG]\n" ); |
1054 | #endif |
1055 | rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList); |
1056 | |
1057 | nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed); |
1058 | nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes; |
1059 | nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes; |
1060 | |
1061 | RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); |
1062 | i = 0; |
1063 | blockNode = &nodes[i]; |
1064 | i += 1; |
1065 | unblockNode = &nodes[i]; |
1066 | i += 1; |
1067 | recoveryNode = &nodes[i]; |
1068 | i += 1; |
1069 | termNode = &nodes[i]; |
1070 | i += 1; |
1071 | rudNodes = &nodes[i]; |
1072 | i += nRudNodes; |
1073 | rrdNodes = &nodes[i]; |
1074 | i += nRrdNodes; |
1075 | rpNodes = &nodes[i]; |
1076 | i += nPQNodes; |
1077 | rqNodes = &nodes[i]; |
1078 | i += nPQNodes; |
1079 | RF_ASSERT(i == nNodes); |
1080 | |
1081 | dag_h->numSuccedents = 1; |
1082 | dag_h->succedents[0] = blockNode; |
1083 | dag_h->creator = "DoubleDegRead" ; |
1084 | dag_h->numCommits = 0; |
1085 | dag_h->numCommitNodes = 1; /* unblock */ |
1086 | |
1087 | rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm" , allocList); |
1088 | termNode->antecedents[0] = unblockNode; |
1089 | termNode->antType[0] = rf_control; |
1090 | termNode->antecedents[1] = recoveryNode; |
1091 | termNode->antType[1] = rf_control; |
1092 | |
1093 | /* init the block and unblock nodes */ |
1094 | /* The block node has all nodes except itself, unblock and recovery as |
1095 | * successors. Similarly for predecessors of the unblock. */ |
1096 | rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil" , allocList); |
1097 | rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil" , allocList); |
1098 | |
1099 | for (i = 0; i < nReadNodes; i++) { |
1100 | blockNode->succedents[i] = rudNodes + i; |
1101 | unblockNode->antecedents[i] = rudNodes + i; |
1102 | unblockNode->antType[i] = rf_control; |
1103 | } |
1104 | unblockNode->succedents[0] = termNode; |
1105 | |
1106 | /* The recovery node has all the reads as predecessors, and the term |
1107 | * node as successors. It gets a pda as a param from each of the read |
1108 | * nodes plus the raidPtr. For each failed unit is has a result pda. */ |
1109 | rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL, |
1110 | 1, /* succesors */ |
1111 | nReadNodes, /* preds */ |
1112 | nReadNodes + 2, /* params */ |
1113 | asmap->numDataFailed, /* results */ |
1114 | dag_h, recoveryNodeName, allocList); |
1115 | |
1116 | recoveryNode->succedents[0] = termNode; |
1117 | for (i = 0; i < nReadNodes; i++) { |
1118 | recoveryNode->antecedents[i] = rudNodes + i; |
1119 | recoveryNode->antType[i] = rf_trueData; |
1120 | } |
1121 | |
1122 | /* build the read nodes, then come back and fill in recovery params |
1123 | * and results */ |
1124 | pda = asmap->physInfo; |
1125 | for (i = 0; i < nRudNodes; pda = pda->next) { |
1126 | if ((pda == failedPDA) || (pda == failedPDAtwo)) |
1127 | continue; |
1128 | INIT_DISK_NODE(rudNodes + i, "Rud" ); |
1129 | RF_ASSERT(pda); |
1130 | DISK_NODE_PARAMS(rudNodes[i], pda); |
1131 | i++; |
1132 | } |
1133 | |
1134 | pda = npdas; |
1135 | for (i = 0; i < nRrdNodes; i++, pda = pda->next) { |
1136 | INIT_DISK_NODE(rrdNodes + i, "Rrd" ); |
1137 | RF_ASSERT(pda); |
1138 | DISK_NODE_PARAMS(rrdNodes[i], pda); |
1139 | } |
1140 | |
1141 | /* redundancy pdas */ |
1142 | pda = pqPDAs; |
1143 | INIT_DISK_NODE(rpNodes, "Rp" ); |
1144 | RF_ASSERT(pda); |
1145 | DISK_NODE_PARAMS(rpNodes[0], pda); |
1146 | pda++; |
1147 | INIT_DISK_NODE(rqNodes, redundantReadNodeName); |
1148 | RF_ASSERT(pda); |
1149 | DISK_NODE_PARAMS(rqNodes[0], pda); |
1150 | if (nPQNodes == 2) { |
1151 | pda++; |
1152 | INIT_DISK_NODE(rpNodes + 1, "Rp" ); |
1153 | RF_ASSERT(pda); |
1154 | DISK_NODE_PARAMS(rpNodes[1], pda); |
1155 | pda++; |
1156 | INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName); |
1157 | RF_ASSERT(pda); |
1158 | DISK_NODE_PARAMS(rqNodes[1], pda); |
1159 | } |
1160 | /* fill in recovery node params */ |
1161 | for (i = 0; i < nReadNodes; i++) |
1162 | recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */ |
1163 | recoveryNode->params[i++].p = (void *) raidPtr; |
1164 | recoveryNode->params[i++].p = (void *) asmap; |
1165 | recoveryNode->results[0] = failedPDA; |
1166 | if (asmap->numDataFailed == 2) |
1167 | recoveryNode->results[1] = failedPDAtwo; |
1168 | |
1169 | /* zero fill the target data buffers? */ |
1170 | } |
1171 | |
1172 | #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */ |
1173 | |