1 | /* $NetBSD: rf_raid1.c,v 1.35 2013/09/15 12:47:26 martin Exp $ */ |
2 | /* |
3 | * Copyright (c) 1995 Carnegie-Mellon University. |
4 | * All rights reserved. |
5 | * |
6 | * Author: William V. Courtright II |
7 | * |
8 | * Permission to use, copy, modify and distribute this software and |
9 | * its documentation is hereby granted, provided that both the copyright |
10 | * notice and this permission notice appear in all copies of the |
11 | * software, derivative works or modified versions, and any portions |
12 | * thereof, and that both notices appear in supporting documentation. |
13 | * |
14 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
15 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND |
16 | * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
17 | * |
18 | * Carnegie Mellon requests users of this software to return to |
19 | * |
20 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
21 | * School of Computer Science |
22 | * Carnegie Mellon University |
23 | * Pittsburgh PA 15213-3890 |
24 | * |
25 | * any improvements or extensions that they make and grant Carnegie the |
26 | * rights to redistribute these changes. |
27 | */ |
28 | |
29 | /***************************************************************************** |
30 | * |
31 | * rf_raid1.c -- implements RAID Level 1 |
32 | * |
33 | *****************************************************************************/ |
34 | |
35 | #include <sys/cdefs.h> |
36 | __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.35 2013/09/15 12:47:26 martin Exp $" ); |
37 | |
38 | #include "rf_raid.h" |
39 | #include "rf_raid1.h" |
40 | #include "rf_dag.h" |
41 | #include "rf_dagffrd.h" |
42 | #include "rf_dagffwr.h" |
43 | #include "rf_dagdegrd.h" |
44 | #include "rf_dagutils.h" |
45 | #include "rf_dagfuncs.h" |
46 | #include "rf_diskqueue.h" |
47 | #include "rf_general.h" |
48 | #include "rf_utils.h" |
49 | #include "rf_parityscan.h" |
50 | #include "rf_mcpair.h" |
51 | #include "rf_layout.h" |
52 | #include "rf_map.h" |
53 | #include "rf_engine.h" |
54 | #include "rf_reconbuffer.h" |
55 | |
56 | typedef struct RF_Raid1ConfigInfo_s { |
57 | RF_RowCol_t **stripeIdentifier; |
58 | } RF_Raid1ConfigInfo_t; |
59 | /* start of day code specific to RAID level 1 */ |
60 | int |
61 | rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr, |
62 | RF_Config_t *cfgPtr) |
63 | { |
64 | RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; |
65 | RF_Raid1ConfigInfo_t *info; |
66 | RF_RowCol_t i; |
67 | |
68 | /* create a RAID level 1 configuration structure */ |
69 | RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList); |
70 | if (info == NULL) |
71 | return (ENOMEM); |
72 | layoutPtr->layoutSpecificInfo = (void *) info; |
73 | |
74 | /* ... and fill it in. */ |
75 | info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList); |
76 | if (info->stripeIdentifier == NULL) |
77 | return (ENOMEM); |
78 | for (i = 0; i < (raidPtr->numCol / 2); i++) { |
79 | info->stripeIdentifier[i][0] = (2 * i); |
80 | info->stripeIdentifier[i][1] = (2 * i) + 1; |
81 | } |
82 | |
83 | /* this implementation of RAID level 1 uses one row of numCol disks |
84 | * and allows multiple (numCol / 2) stripes per row. A stripe |
85 | * consists of a single data unit and a single parity (mirror) unit. |
86 | * stripe id = raidAddr / stripeUnitSize */ |
87 | raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit; |
88 | layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2); |
89 | layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit; |
90 | layoutPtr->numDataCol = 1; |
91 | layoutPtr->numParityCol = 1; |
92 | return (0); |
93 | } |
94 | |
95 | |
96 | /* returns the physical disk location of the primary copy in the mirror pair */ |
97 | void |
98 | rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, |
99 | RF_RowCol_t *col, RF_SectorNum_t *diskSector, |
100 | int remap) |
101 | { |
102 | RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; |
103 | RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); |
104 | |
105 | *col = 2 * mirrorPair; |
106 | *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); |
107 | } |
108 | |
109 | |
110 | /* Map Parity |
111 | * |
112 | * returns the physical disk location of the secondary copy in the mirror |
113 | * pair |
114 | */ |
115 | void |
116 | rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, |
117 | RF_RowCol_t *col, RF_SectorNum_t *diskSector, |
118 | int remap) |
119 | { |
120 | RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; |
121 | RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); |
122 | |
123 | *col = (2 * mirrorPair) + 1; |
124 | |
125 | *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); |
126 | } |
127 | |
128 | |
129 | /* IdentifyStripeRAID1 |
130 | * |
131 | * returns a list of disks for a given redundancy group |
132 | */ |
133 | void |
134 | rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr, |
135 | RF_RowCol_t **diskids) |
136 | { |
137 | RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); |
138 | RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo; |
139 | RF_ASSERT(stripeID >= 0); |
140 | RF_ASSERT(addr >= 0); |
141 | *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)]; |
142 | RF_ASSERT(*diskids); |
143 | } |
144 | |
145 | |
146 | /* MapSIDToPSIDRAID1 |
147 | * |
148 | * maps a logical stripe to a stripe in the redundant array |
149 | */ |
150 | void |
151 | rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr, |
152 | RF_StripeNum_t stripeID, |
153 | RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru) |
154 | { |
155 | *which_ru = 0; |
156 | *psID = stripeID; |
157 | } |
158 | |
159 | |
160 | |
161 | /****************************************************************************** |
162 | * select a graph to perform a single-stripe access |
163 | * |
164 | * Parameters: raidPtr - description of the physical array |
165 | * type - type of operation (read or write) requested |
166 | * asmap - logical & physical addresses for this access |
167 | * createFunc - name of function to use to create the graph |
168 | *****************************************************************************/ |
169 | |
170 | void |
171 | rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type, |
172 | RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc) |
173 | { |
174 | RF_RowCol_t fcol, oc __unused; |
175 | RF_PhysDiskAddr_t *failedPDA; |
176 | int prior_recon; |
177 | RF_RowStatus_t rstat; |
178 | RF_SectorNum_t oo __unused; |
179 | |
180 | |
181 | RF_ASSERT(RF_IO_IS_R_OR_W(type)); |
182 | |
183 | if (asmap->numDataFailed + asmap->numParityFailed > 1) { |
184 | #if RF_DEBUG_DAG |
185 | if (rf_dagDebug) |
186 | RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n" ); |
187 | #endif |
188 | *createFunc = NULL; |
189 | return; |
190 | } |
191 | if (asmap->numDataFailed + asmap->numParityFailed) { |
192 | /* |
193 | * We've got a fault. Re-map to spare space, iff applicable. |
194 | * Shouldn't the arch-independent code do this for us? |
195 | * Anyway, it turns out if we don't do this here, then when |
196 | * we're reconstructing, writes go only to the surviving |
197 | * original disk, and aren't reflected on the reconstructed |
198 | * spare. Oops. --jimz |
199 | */ |
200 | failedPDA = asmap->failedPDAs[0]; |
201 | fcol = failedPDA->col; |
202 | rstat = raidPtr->status; |
203 | prior_recon = (rstat == rf_rs_reconfigured) || ( |
204 | (rstat == rf_rs_reconstructing) ? |
205 | rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0 |
206 | ); |
207 | if (prior_recon) { |
208 | oc = fcol; |
209 | oo = failedPDA->startSector; |
210 | /* |
211 | * If we did distributed sparing, we'd monkey with that here. |
212 | * But we don't, so we'll |
213 | */ |
214 | failedPDA->col = raidPtr->Disks[fcol].spareCol; |
215 | /* |
216 | * Redirect other components, iff necessary. This looks |
217 | * pretty suspicious to me, but it's what the raid5 |
218 | * DAG select does. |
219 | */ |
220 | if (asmap->parityInfo->next) { |
221 | if (failedPDA == asmap->parityInfo) { |
222 | failedPDA->next->col = failedPDA->col; |
223 | } else { |
224 | if (failedPDA == asmap->parityInfo->next) { |
225 | asmap->parityInfo->col = failedPDA->col; |
226 | } |
227 | } |
228 | } |
229 | #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0 |
230 | if (rf_dagDebug || rf_mapDebug) { |
231 | printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n" , |
232 | raidPtr->raidid, type, oc, |
233 | (long) oo, |
234 | failedPDA->col, |
235 | (long) failedPDA->startSector); |
236 | } |
237 | #endif |
238 | asmap->numDataFailed = asmap->numParityFailed = 0; |
239 | } |
240 | } |
241 | if (type == RF_IO_TYPE_READ) { |
242 | if (asmap->numDataFailed == 0) |
243 | *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG; |
244 | else |
245 | *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG; |
246 | } else { |
247 | *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; |
248 | } |
249 | } |
250 | |
251 | int |
252 | rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr, |
253 | RF_PhysDiskAddr_t *parityPDA, int correct_it, |
254 | RF_RaidAccessFlags_t flags) |
255 | { |
256 | int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs; |
257 | RF_DagNode_t *blockNode, *wrBlock; |
258 | RF_DagHeader_t *rd_dag_h, *wr_dag_h; |
259 | RF_AccessStripeMapHeader_t *asm_h; |
260 | RF_AllocListElem_t *allocList; |
261 | #if RF_ACC_TRACE > 0 |
262 | RF_AccTraceEntry_t tracerec; |
263 | #endif |
264 | RF_ReconUnitNum_t which_ru; |
265 | RF_RaidLayout_t *layoutPtr; |
266 | RF_AccessStripeMap_t *aasm; |
267 | RF_SectorCount_t nsector; |
268 | RF_RaidAddr_t startAddr; |
269 | char *bf, *buf1, *buf2; |
270 | RF_PhysDiskAddr_t *pda; |
271 | RF_StripeNum_t psID; |
272 | RF_MCPair_t *mcpair; |
273 | |
274 | layoutPtr = &raidPtr->Layout; |
275 | startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); |
276 | nsector = parityPDA->numSector; |
277 | nbytes = rf_RaidAddressToByte(raidPtr, nsector); |
278 | psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); |
279 | |
280 | asm_h = NULL; |
281 | rd_dag_h = wr_dag_h = NULL; |
282 | mcpair = NULL; |
283 | |
284 | ret = RF_PARITY_COULD_NOT_VERIFY; |
285 | |
286 | rf_MakeAllocList(allocList); |
287 | if (allocList == NULL) |
288 | return (RF_PARITY_COULD_NOT_VERIFY); |
289 | mcpair = rf_AllocMCPair(); |
290 | if (mcpair == NULL) |
291 | goto done; |
292 | RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol); |
293 | stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; |
294 | bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol); |
295 | RF_MallocAndAdd(bf, bcount, (char *), allocList); |
296 | if (bf == NULL) |
297 | goto done; |
298 | #if RF_DEBUG_VERIFYPARITY |
299 | if (rf_verifyParityDebug) { |
300 | printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n" , |
301 | raidPtr->raidid, (long) bf, bcount, (long) bf, |
302 | (long) bf + bcount); |
303 | } |
304 | #endif |
305 | /* |
306 | * Generate a DAG which will read the entire stripe- then we can |
307 | * just compare data chunks versus "parity" chunks. |
308 | */ |
309 | |
310 | rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, bf, |
311 | rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod" , allocList, flags, |
312 | RF_IO_NORMAL_PRIORITY); |
313 | if (rd_dag_h == NULL) |
314 | goto done; |
315 | blockNode = rd_dag_h->succedents[0]; |
316 | |
317 | /* |
318 | * Map the access to physical disk addresses (PDAs)- this will |
319 | * get us both a list of data addresses, and "parity" addresses |
320 | * (which are really mirror copies). |
321 | */ |
322 | asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, |
323 | bf, RF_DONT_REMAP); |
324 | aasm = asm_h->stripeMap; |
325 | |
326 | buf1 = bf; |
327 | /* |
328 | * Loop through the data blocks, setting up read nodes for each. |
329 | */ |
330 | for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { |
331 | RF_ASSERT(pda); |
332 | |
333 | rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); |
334 | |
335 | RF_ASSERT(pda->numSector != 0); |
336 | if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { |
337 | /* cannot verify parity with dead disk */ |
338 | goto done; |
339 | } |
340 | pda->bufPtr = buf1; |
341 | blockNode->succedents[i]->params[0].p = pda; |
342 | blockNode->succedents[i]->params[1].p = buf1; |
343 | blockNode->succedents[i]->params[2].v = psID; |
344 | blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
345 | buf1 += nbytes; |
346 | } |
347 | RF_ASSERT(pda == NULL); |
348 | /* |
349 | * keep i, buf1 running |
350 | * |
351 | * Loop through parity blocks, setting up read nodes for each. |
352 | */ |
353 | for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) { |
354 | RF_ASSERT(pda); |
355 | rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); |
356 | RF_ASSERT(pda->numSector != 0); |
357 | if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { |
358 | /* cannot verify parity with dead disk */ |
359 | goto done; |
360 | } |
361 | pda->bufPtr = buf1; |
362 | blockNode->succedents[i]->params[0].p = pda; |
363 | blockNode->succedents[i]->params[1].p = buf1; |
364 | blockNode->succedents[i]->params[2].v = psID; |
365 | blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
366 | buf1 += nbytes; |
367 | } |
368 | RF_ASSERT(pda == NULL); |
369 | |
370 | #if RF_ACC_TRACE > 0 |
371 | memset((char *) &tracerec, 0, sizeof(tracerec)); |
372 | rd_dag_h->tracerec = &tracerec; |
373 | #endif |
374 | #if 0 |
375 | if (rf_verifyParityDebug > 1) { |
376 | printf("raid%d: RAID1 parity verify read dag:\n" , |
377 | raidPtr->raidid); |
378 | rf_PrintDAGList(rd_dag_h); |
379 | } |
380 | #endif |
381 | RF_LOCK_MCPAIR(mcpair); |
382 | mcpair->flag = 0; |
383 | RF_UNLOCK_MCPAIR(mcpair); |
384 | |
385 | rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, |
386 | (void *) mcpair); |
387 | |
388 | RF_LOCK_MCPAIR(mcpair); |
389 | while (mcpair->flag == 0) { |
390 | RF_WAIT_MCPAIR(mcpair); |
391 | } |
392 | RF_UNLOCK_MCPAIR(mcpair); |
393 | |
394 | if (rd_dag_h->status != rf_enable) { |
395 | RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n" ); |
396 | ret = RF_PARITY_COULD_NOT_VERIFY; |
397 | goto done; |
398 | } |
399 | /* |
400 | * buf1 is the beginning of the data blocks chunk |
401 | * buf2 is the beginning of the parity blocks chunk |
402 | */ |
403 | buf1 = bf; |
404 | buf2 = bf + (nbytes * layoutPtr->numDataCol); |
405 | ret = RF_PARITY_OKAY; |
406 | /* |
407 | * bbufs is "bad bufs"- an array whose entries are the data |
408 | * column numbers where we had miscompares. (That is, column 0 |
409 | * and column 1 of the array are mirror copies, and are considered |
410 | * "data column 0" for this purpose). |
411 | */ |
412 | RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *), |
413 | allocList); |
414 | nbad = 0; |
415 | /* |
416 | * Check data vs "parity" (mirror copy). |
417 | */ |
418 | for (i = 0; i < layoutPtr->numDataCol; i++) { |
419 | #if RF_DEBUG_VERIFYPARITY |
420 | if (rf_verifyParityDebug) { |
421 | printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n" , |
422 | raidPtr->raidid, nbytes, i, (long) buf1, |
423 | (long) buf2, (long) bf); |
424 | } |
425 | #endif |
426 | ret = memcmp(buf1, buf2, nbytes); |
427 | if (ret) { |
428 | #if RF_DEBUG_VERIFYPARITY |
429 | if (rf_verifyParityDebug > 1) { |
430 | for (j = 0; j < nbytes; j++) { |
431 | if (buf1[j] != buf2[j]) |
432 | break; |
433 | } |
434 | printf("psid=%ld j=%d\n" , (long) psID, j); |
435 | printf("buf1 %02x %02x %02x %02x %02x\n" , buf1[0] & 0xff, |
436 | buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff); |
437 | printf("buf2 %02x %02x %02x %02x %02x\n" , buf2[0] & 0xff, |
438 | buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff); |
439 | } |
440 | if (rf_verifyParityDebug) { |
441 | printf("raid%d: RAID1: found bad parity, i=%d\n" , raidPtr->raidid, i); |
442 | } |
443 | #endif |
444 | /* |
445 | * Parity is bad. Keep track of which columns were bad. |
446 | */ |
447 | if (bbufs) |
448 | bbufs[nbad] = i; |
449 | nbad++; |
450 | ret = RF_PARITY_BAD; |
451 | } |
452 | buf1 += nbytes; |
453 | buf2 += nbytes; |
454 | } |
455 | |
456 | if ((ret != RF_PARITY_OKAY) && correct_it) { |
457 | ret = RF_PARITY_COULD_NOT_CORRECT; |
458 | #if RF_DEBUG_VERIFYPARITY |
459 | if (rf_verifyParityDebug) { |
460 | printf("raid%d: RAID1 parity verify: parity not correct\n" , raidPtr->raidid); |
461 | } |
462 | #endif |
463 | if (bbufs == NULL) |
464 | goto done; |
465 | /* |
466 | * Make a DAG with one write node for each bad unit. We'll simply |
467 | * write the contents of the data unit onto the parity unit for |
468 | * correction. (It's possible that the mirror copy was the correct |
469 | * copy, and that we're spooging good data by writing bad over it, |
470 | * but there's no way we can know that. |
471 | */ |
472 | wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, bf, |
473 | rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp" , allocList, flags, |
474 | RF_IO_NORMAL_PRIORITY); |
475 | if (wr_dag_h == NULL) |
476 | goto done; |
477 | wrBlock = wr_dag_h->succedents[0]; |
478 | /* |
479 | * Fill in a write node for each bad compare. |
480 | */ |
481 | for (i = 0; i < nbad; i++) { |
482 | j = i + layoutPtr->numDataCol; |
483 | pda = blockNode->succedents[j]->params[0].p; |
484 | pda->bufPtr = blockNode->succedents[i]->params[1].p; |
485 | wrBlock->succedents[i]->params[0].p = pda; |
486 | wrBlock->succedents[i]->params[1].p = pda->bufPtr; |
487 | wrBlock->succedents[i]->params[2].v = psID; |
488 | wrBlock->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); |
489 | } |
490 | #if RF_ACC_TRACE > 0 |
491 | memset((char *) &tracerec, 0, sizeof(tracerec)); |
492 | wr_dag_h->tracerec = &tracerec; |
493 | #endif |
494 | #if 0 |
495 | if (rf_verifyParityDebug > 1) { |
496 | printf("Parity verify write dag:\n" ); |
497 | rf_PrintDAGList(wr_dag_h); |
498 | } |
499 | #endif |
500 | RF_LOCK_MCPAIR(mcpair); |
501 | mcpair->flag = 0; |
502 | RF_UNLOCK_MCPAIR(mcpair); |
503 | |
504 | /* fire off the write DAG */ |
505 | rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, |
506 | (void *) mcpair); |
507 | |
508 | RF_LOCK_MCPAIR(mcpair); |
509 | while (!mcpair->flag) { |
510 | RF_WAIT_MCPAIR(mcpair); |
511 | } |
512 | RF_UNLOCK_MCPAIR(mcpair); |
513 | if (wr_dag_h->status != rf_enable) { |
514 | RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n" ); |
515 | goto done; |
516 | } |
517 | ret = RF_PARITY_CORRECTED; |
518 | } |
519 | done: |
520 | /* |
521 | * All done. We might've gotten here without doing part of the function, |
522 | * so cleanup what we have to and return our running status. |
523 | */ |
524 | if (asm_h) |
525 | rf_FreeAccessStripeMap(asm_h); |
526 | if (rd_dag_h) |
527 | rf_FreeDAG(rd_dag_h); |
528 | if (wr_dag_h) |
529 | rf_FreeDAG(wr_dag_h); |
530 | if (mcpair) |
531 | rf_FreeMCPair(mcpair); |
532 | rf_FreeAllocList(allocList); |
533 | #if RF_DEBUG_VERIFYPARITY |
534 | if (rf_verifyParityDebug) { |
535 | printf("raid%d: RAID1 parity verify, returning %d\n" , |
536 | raidPtr->raidid, ret); |
537 | } |
538 | #endif |
539 | return (ret); |
540 | } |
541 | |
542 | /* rbuf - the recon buffer to submit |
543 | * keep_it - whether we can keep this buffer or we have to return it |
544 | * use_committed - whether to use a committed or an available recon buffer |
545 | */ |
546 | |
547 | int |
548 | rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it, |
549 | int use_committed) |
550 | { |
551 | RF_ReconParityStripeStatus_t *pssPtr; |
552 | RF_ReconCtrl_t *reconCtrlPtr; |
553 | int retcode; |
554 | RF_CallbackDesc_t *cb, *p; |
555 | RF_ReconBuffer_t *t; |
556 | RF_Raid_t *raidPtr; |
557 | void *ta; |
558 | |
559 | retcode = 0; |
560 | |
561 | raidPtr = rbuf->raidPtr; |
562 | reconCtrlPtr = raidPtr->reconControl; |
563 | |
564 | RF_ASSERT(rbuf); |
565 | RF_ASSERT(rbuf->col != reconCtrlPtr->fcol); |
566 | |
567 | #if RF_DEBUG_RECON |
568 | if (rf_reconbufferDebug) { |
569 | printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n" , |
570 | raidPtr->raidid, rbuf->col, |
571 | (long) rbuf->parityStripeID, rbuf->which_ru, |
572 | (long) rbuf->failedDiskSectorOffset); |
573 | } |
574 | #endif |
575 | if (rf_reconDebug) { |
576 | unsigned char *b = rbuf->buffer; |
577 | printf("RAID1 reconbuffer submit psid %ld buf %lx\n" , |
578 | (long) rbuf->parityStripeID, (long) rbuf->buffer); |
579 | printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n" , |
580 | (long)rbuf->parityStripeID, b[0], b[1], b[2], b[3], b[4]); |
581 | } |
582 | RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID); |
583 | |
584 | rf_lock_mutex2(reconCtrlPtr->rb_mutex); |
585 | while(reconCtrlPtr->rb_lock) { |
586 | rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); |
587 | } |
588 | reconCtrlPtr->rb_lock = 1; |
589 | rf_unlock_mutex2(reconCtrlPtr->rb_mutex); |
590 | |
591 | pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable, |
592 | rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL); |
593 | RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten |
594 | * an rbuf for it */ |
595 | |
596 | /* |
597 | * Since this is simple mirroring, the first submission for a stripe is also |
598 | * treated as the last. |
599 | */ |
600 | |
601 | t = NULL; |
602 | if (keep_it) { |
603 | #if RF_DEBUG_RECON |
604 | if (rf_reconbufferDebug) { |
605 | printf("raid%d: RAID1 rbuf submission: keeping rbuf\n" , |
606 | raidPtr->raidid); |
607 | } |
608 | #endif |
609 | t = rbuf; |
610 | } else { |
611 | if (use_committed) { |
612 | #if RF_DEBUG_RECON |
613 | if (rf_reconbufferDebug) { |
614 | printf("raid%d: RAID1 rbuf submission: using committed rbuf\n" , raidPtr->raidid); |
615 | } |
616 | #endif |
617 | t = reconCtrlPtr->committedRbufs; |
618 | RF_ASSERT(t); |
619 | reconCtrlPtr->committedRbufs = t->next; |
620 | t->next = NULL; |
621 | } else |
622 | if (reconCtrlPtr->floatingRbufs) { |
623 | #if RF_DEBUG_RECON |
624 | if (rf_reconbufferDebug) { |
625 | printf("raid%d: RAID1 rbuf submission: using floating rbuf\n" , raidPtr->raidid); |
626 | } |
627 | #endif |
628 | t = reconCtrlPtr->floatingRbufs; |
629 | reconCtrlPtr->floatingRbufs = t->next; |
630 | t->next = NULL; |
631 | } |
632 | } |
633 | if (t == NULL) { |
634 | #if RF_DEBUG_RECON |
635 | if (rf_reconbufferDebug) { |
636 | printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n" , raidPtr->raidid); |
637 | } |
638 | #endif |
639 | RF_ASSERT((keep_it == 0) && (use_committed == 0)); |
640 | raidPtr->procsInBufWait++; |
641 | if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1)) |
642 | && (raidPtr->numFullReconBuffers == 0)) { |
643 | /* ruh-ro */ |
644 | RF_ERRORMSG("Buffer wait deadlock\n" ); |
645 | rf_PrintPSStatusTable(raidPtr); |
646 | RF_PANIC(); |
647 | } |
648 | pssPtr->flags |= RF_PSS_BUFFERWAIT; |
649 | cb = rf_AllocCallbackDesc(); |
650 | cb->col = rbuf->col; |
651 | cb->callbackArg.v = rbuf->parityStripeID; |
652 | cb->next = NULL; |
653 | if (reconCtrlPtr->bufferWaitList == NULL) { |
654 | /* we are the wait list- lucky us */ |
655 | reconCtrlPtr->bufferWaitList = cb; |
656 | } else { |
657 | /* append to wait list */ |
658 | for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next); |
659 | p->next = cb; |
660 | } |
661 | retcode = 1; |
662 | goto out; |
663 | } |
664 | if (t != rbuf) { |
665 | t->col = reconCtrlPtr->fcol; |
666 | t->parityStripeID = rbuf->parityStripeID; |
667 | t->which_ru = rbuf->which_ru; |
668 | t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset; |
669 | t->spCol = rbuf->spCol; |
670 | t->spOffset = rbuf->spOffset; |
671 | /* Swap buffers. DANCE! */ |
672 | ta = t->buffer; |
673 | t->buffer = rbuf->buffer; |
674 | rbuf->buffer = ta; |
675 | } |
676 | /* |
677 | * Use the rbuf we've been given as the target. |
678 | */ |
679 | RF_ASSERT(pssPtr->rbuf == NULL); |
680 | pssPtr->rbuf = t; |
681 | |
682 | t->count = 1; |
683 | /* |
684 | * Below, we use 1 for numDataCol (which is equal to the count in the |
685 | * previous line), so we'll always be done. |
686 | */ |
687 | rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1); |
688 | |
689 | out: |
690 | RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID); |
691 | rf_lock_mutex2(reconCtrlPtr->rb_mutex); |
692 | reconCtrlPtr->rb_lock = 0; |
693 | rf_broadcast_cond2(reconCtrlPtr->rb_cv); |
694 | rf_unlock_mutex2(reconCtrlPtr->rb_mutex); |
695 | #if RF_DEBUG_RECON |
696 | if (rf_reconbufferDebug) { |
697 | printf("raid%d: RAID1 rbuf submission: returning %d\n" , |
698 | raidPtr->raidid, retcode); |
699 | } |
700 | #endif |
701 | return (retcode); |
702 | } |
703 | |
704 | RF_HeadSepLimit_t |
705 | rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t *raidPtr) |
706 | { |
707 | return (10); |
708 | } |
709 | |
710 | |