1 | /* |
2 | * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting |
3 | * Copyright (c) 2002-2008 Atheros Communications, Inc. |
4 | * |
5 | * Permission to use, copy, modify, and/or distribute this software for any |
6 | * purpose with or without fee is hereby granted, provided that the above |
7 | * copyright notice and this permission notice appear in all copies. |
8 | * |
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
16 | * |
17 | * $Id: ar2316.c,v 1.3 2013/09/12 11:44:08 martin Exp $ |
18 | */ |
19 | #include "opt_ah.h" |
20 | |
21 | #include "ah.h" |
22 | #include "ah_internal.h" |
23 | |
24 | #include "ar5212/ar5212.h" |
25 | #include "ar5212/ar5212reg.h" |
26 | #include "ar5212/ar5212phy.h" |
27 | |
28 | #include "ah_eeprom_v3.h" |
29 | |
30 | #define AH_5212_2316 |
31 | #include "ar5212/ar5212.ini" |
32 | |
33 | #define N(a) (sizeof(a)/sizeof(a[0])) |
34 | |
35 | typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316; |
36 | typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316; |
37 | #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413 |
38 | |
39 | struct ar2316State { |
40 | RF_HAL_FUNCS base; /* public state, must be first */ |
41 | uint16_t pcdacTable[PWR_TABLE_SIZE_2316]; |
42 | |
43 | uint32_t Bank1Data[N(ar5212Bank1_2316)]; |
44 | uint32_t Bank2Data[N(ar5212Bank2_2316)]; |
45 | uint32_t Bank3Data[N(ar5212Bank3_2316)]; |
46 | uint32_t Bank6Data[N(ar5212Bank6_2316)]; |
47 | uint32_t Bank7Data[N(ar5212Bank7_2316)]; |
48 | |
49 | /* |
50 | * Private state for reduced stack usage. |
51 | */ |
52 | /* filled out Vpd table for all pdGains (chanL) */ |
53 | uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] |
54 | [MAX_PWR_RANGE_IN_HALF_DB]; |
55 | /* filled out Vpd table for all pdGains (chanR) */ |
56 | uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] |
57 | [MAX_PWR_RANGE_IN_HALF_DB]; |
58 | /* filled out Vpd table for all pdGains (interpolated) */ |
59 | uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] |
60 | [MAX_PWR_RANGE_IN_HALF_DB]; |
61 | }; |
62 | #define AR2316(ah) ((struct ar2316State *) AH5212(ah)->ah_rfHal) |
63 | |
64 | extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, |
65 | uint32_t numBits, uint32_t firstBit, uint32_t column); |
66 | |
67 | static void |
68 | ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, |
69 | int regWrites) |
70 | { |
71 | struct ath_hal_5212 *ahp = AH5212(ah); |
72 | |
73 | HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites); |
74 | HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites); |
75 | HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites); |
76 | |
77 | /* For AP51 */ |
78 | if (!ahp->ah_cwCalRequire) { |
79 | OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2)); |
80 | } else { |
81 | ahp->ah_cwCalRequire = AH_FALSE; |
82 | } |
83 | } |
84 | |
85 | /* |
86 | * Take the MHz channel value and set the Channel value |
87 | * |
88 | * ASSUMES: Writes enabled to analog bus |
89 | */ |
90 | static HAL_BOOL |
91 | ar2316SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) |
92 | { |
93 | uint32_t channelSel = 0; |
94 | uint32_t bModeSynth = 0; |
95 | uint32_t aModeRefSel = 0; |
96 | uint32_t reg32 = 0; |
97 | |
98 | OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); |
99 | |
100 | if (chan->channel < 4800) { |
101 | uint32_t txctl; |
102 | |
103 | if (((chan->channel - 2192) % 5) == 0) { |
104 | channelSel = ((chan->channel - 672) * 2 - 3040)/10; |
105 | bModeSynth = 0; |
106 | } else if (((chan->channel - 2224) % 5) == 0) { |
107 | channelSel = ((chan->channel - 704) * 2 - 3040) / 10; |
108 | bModeSynth = 1; |
109 | } else { |
110 | HALDEBUG(ah, HAL_DEBUG_ANY, |
111 | "%s: invalid channel %u MHz\n" , |
112 | __func__, chan->channel); |
113 | return AH_FALSE; |
114 | } |
115 | |
116 | channelSel = (channelSel << 2) & 0xff; |
117 | channelSel = ath_hal_reverseBits(channelSel, 8); |
118 | |
119 | txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); |
120 | if (chan->channel == 2484) { |
121 | /* Enable channel spreading for channel 14 */ |
122 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
123 | txctl | AR_PHY_CCK_TX_CTRL_JAPAN); |
124 | } else { |
125 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
126 | txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); |
127 | } |
128 | } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { |
129 | channelSel = ath_hal_reverseBits( |
130 | ((chan->channel - 4800) / 20 << 2), 8); |
131 | aModeRefSel = ath_hal_reverseBits(3, 2); |
132 | } else if ((chan->channel % 10) == 0) { |
133 | channelSel = ath_hal_reverseBits( |
134 | ((chan->channel - 4800) / 10 << 1), 8); |
135 | aModeRefSel = ath_hal_reverseBits(2, 2); |
136 | } else if ((chan->channel % 5) == 0) { |
137 | channelSel = ath_hal_reverseBits( |
138 | (chan->channel - 4800) / 5, 8); |
139 | aModeRefSel = ath_hal_reverseBits(1, 2); |
140 | } else { |
141 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n" , |
142 | __func__, chan->channel); |
143 | return AH_FALSE; |
144 | } |
145 | |
146 | reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | |
147 | (1 << 12) | 0x1; |
148 | OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); |
149 | |
150 | reg32 >>= 8; |
151 | OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); |
152 | |
153 | AH_PRIVATE(ah)->ah_curchan = chan; |
154 | return AH_TRUE; |
155 | } |
156 | |
157 | /* |
158 | * Reads EEPROM header info from device structure and programs |
159 | * all rf registers |
160 | * |
161 | * REQUIRES: Access to the analog rf device |
162 | */ |
163 | static HAL_BOOL |
164 | ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain) |
165 | { |
166 | #define RF_BANK_SETUP(_priv, _ix, _col) do { \ |
167 | int i; \ |
168 | for (i = 0; i < N(ar5212Bank##_ix##_2316); i++) \ |
169 | (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\ |
170 | } while (0) |
171 | struct ath_hal_5212 *ahp = AH5212(ah); |
172 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
173 | uint16_t ob2GHz = 0, db2GHz = 0; |
174 | struct ar2316State *priv = AR2316(ah); |
175 | int regWrites = 0; |
176 | |
177 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, |
178 | "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n" , |
179 | __func__, chan->channel, chan->channelFlags, modesIndex); |
180 | |
181 | HALASSERT(priv != AH_NULL); |
182 | |
183 | /* Setup rf parameters */ |
184 | switch (chan->channelFlags & CHANNEL_ALL) { |
185 | case CHANNEL_B: |
186 | ob2GHz = ee->ee_obFor24; |
187 | db2GHz = ee->ee_dbFor24; |
188 | break; |
189 | case CHANNEL_G: |
190 | case CHANNEL_108G: |
191 | ob2GHz = ee->ee_obFor24g; |
192 | db2GHz = ee->ee_dbFor24g; |
193 | break; |
194 | default: |
195 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n" , |
196 | __func__, chan->channelFlags); |
197 | return AH_FALSE; |
198 | } |
199 | |
200 | /* Bank 1 Write */ |
201 | RF_BANK_SETUP(priv, 1, 1); |
202 | |
203 | /* Bank 2 Write */ |
204 | RF_BANK_SETUP(priv, 2, modesIndex); |
205 | |
206 | /* Bank 3 Write */ |
207 | RF_BANK_SETUP(priv, 3, modesIndex); |
208 | |
209 | /* Bank 6 Write */ |
210 | RF_BANK_SETUP(priv, 6, modesIndex); |
211 | |
212 | ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 178, 0); |
213 | ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 175, 0); |
214 | |
215 | /* Bank 7 Setup */ |
216 | RF_BANK_SETUP(priv, 7, modesIndex); |
217 | |
218 | /* Write Analog registers */ |
219 | HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites); |
220 | HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites); |
221 | HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites); |
222 | HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites); |
223 | HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites); |
224 | |
225 | /* Now that we have reprogrammed rfgain value, clear the flag. */ |
226 | ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; |
227 | |
228 | return AH_TRUE; |
229 | #undef RF_BANK_SETUP |
230 | } |
231 | |
232 | /* |
233 | * Return a reference to the requested RF Bank. |
234 | */ |
235 | static uint32_t * |
236 | ar2316GetRfBank(struct ath_hal *ah, int bank) |
237 | { |
238 | struct ar2316State *priv = AR2316(ah); |
239 | |
240 | HALASSERT(priv != AH_NULL); |
241 | switch (bank) { |
242 | case 1: return priv->Bank1Data; |
243 | case 2: return priv->Bank2Data; |
244 | case 3: return priv->Bank3Data; |
245 | case 6: return priv->Bank6Data; |
246 | case 7: return priv->Bank7Data; |
247 | } |
248 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n" , |
249 | __func__, bank); |
250 | return AH_NULL; |
251 | } |
252 | |
253 | /* |
254 | * Return indices surrounding the value in sorted integer lists. |
255 | * |
256 | * NB: the input list is assumed to be sorted in ascending order |
257 | */ |
258 | static void |
259 | GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, |
260 | uint32_t *vlo, uint32_t *vhi) |
261 | { |
262 | int16_t target = v; |
263 | const int16_t *ep = lp+listSize; |
264 | const int16_t *tp; |
265 | |
266 | /* |
267 | * Check first and last elements for out-of-bounds conditions. |
268 | */ |
269 | if (target < lp[0]) { |
270 | *vlo = *vhi = 0; |
271 | return; |
272 | } |
273 | if (target >= ep[-1]) { |
274 | *vlo = *vhi = listSize - 1; |
275 | return; |
276 | } |
277 | |
278 | /* look for value being near or between 2 values in list */ |
279 | for (tp = lp; tp < ep; tp++) { |
280 | /* |
281 | * If value is close to the current value of the list |
282 | * then target is not between values, it is one of the values |
283 | */ |
284 | if (*tp == target) { |
285 | *vlo = *vhi = tp - (const int16_t *) lp; |
286 | return; |
287 | } |
288 | /* |
289 | * Look for value being between current value and next value |
290 | * if so return these 2 values |
291 | */ |
292 | if (target < tp[1]) { |
293 | *vlo = tp - (const int16_t *) lp; |
294 | *vhi = *vlo + 1; |
295 | return; |
296 | } |
297 | } |
298 | } |
299 | |
300 | /* |
301 | * Fill the Vpdlist for indices Pmax-Pmin |
302 | */ |
303 | static HAL_BOOL |
304 | ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, |
305 | const int16_t *pwrList, const int16_t *VpdList, |
306 | uint16_t numIntercepts, uint16_t retVpdList[][64]) |
307 | { |
308 | uint16_t ii, kk; |
309 | int16_t currPwr = (int16_t)(2*Pmin); |
310 | /* since Pmin is pwr*2 and pwrList is 4*pwr */ |
311 | uint32_t idxL = 0, idxR = 0; |
312 | |
313 | ii = 0; |
314 | |
315 | if (numIntercepts < 2) |
316 | return AH_FALSE; |
317 | |
318 | while (ii <= (uint16_t)(Pmax - Pmin)) { |
319 | GetLowerUpperIndex(currPwr, pwrList, numIntercepts, |
320 | &(idxL), &(idxR)); |
321 | if (idxR < 1) |
322 | idxR = 1; /* extrapolate below */ |
323 | if (idxL == (uint32_t)(numIntercepts - 1)) |
324 | idxL = numIntercepts - 2; /* extrapolate above */ |
325 | if (pwrList[idxL] == pwrList[idxR]) |
326 | kk = VpdList[idxL]; |
327 | else |
328 | kk = (uint16_t) |
329 | (((currPwr - pwrList[idxL])*VpdList[idxR]+ |
330 | (pwrList[idxR] - currPwr)*VpdList[idxL])/ |
331 | (pwrList[idxR] - pwrList[idxL])); |
332 | retVpdList[pdGainIdx][ii] = kk; |
333 | ii++; |
334 | currPwr += 2; /* half dB steps */ |
335 | } |
336 | |
337 | return AH_TRUE; |
338 | } |
339 | |
340 | /* |
341 | * Returns interpolated or the scaled up interpolated value |
342 | */ |
343 | static int16_t |
344 | interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, |
345 | int16_t targetLeft, int16_t targetRight) |
346 | { |
347 | int16_t rv; |
348 | |
349 | if (srcRight != srcLeft) { |
350 | rv = ((target - srcLeft)*targetRight + |
351 | (srcRight - target)*targetLeft) / (srcRight - srcLeft); |
352 | } else { |
353 | rv = targetLeft; |
354 | } |
355 | return rv; |
356 | } |
357 | |
358 | /* |
359 | * Uses the data points read from EEPROM to reconstruct the pdadc power table |
360 | * Called by ar2316SetPowerTable() |
361 | */ |
362 | static int |
363 | ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, |
364 | const RAW_DATA_STRUCT_2316 *pRawDataset, |
365 | uint16_t pdGainOverlap_t2, |
366 | int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], |
367 | uint16_t pPdGainValues[], uint16_t pPDADCValues[]) |
368 | { |
369 | struct ar2316State *priv = AR2316(ah); |
370 | #define VpdTable_L priv->vpdTable_L |
371 | #define VpdTable_R priv->vpdTable_R |
372 | #define VpdTable_I priv->vpdTable_I |
373 | uint32_t ii, jj, kk; |
374 | int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ |
375 | uint32_t idxL = 0, idxR = 0; |
376 | uint32_t numPdGainsUsed = 0; |
377 | /* |
378 | * If desired to support -ve power levels in future, just |
379 | * change pwr_I_0 to signed 5-bits. |
380 | */ |
381 | int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
382 | /* to accomodate -ve power levels later on. */ |
383 | int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
384 | /* to accomodate -ve power levels later on */ |
385 | uint16_t numVpd = 0; |
386 | uint16_t Vpd_step; |
387 | int16_t tmpVal ; |
388 | uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; |
389 | |
390 | /* Get upper lower index */ |
391 | GetLowerUpperIndex(channel, pRawDataset->pChannels, |
392 | pRawDataset->numChannels, &(idxL), &(idxR)); |
393 | |
394 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
395 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
396 | /* work backwards 'cause highest pdGain for lowest power */ |
397 | numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; |
398 | if (numVpd > 0) { |
399 | pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; |
400 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; |
401 | if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { |
402 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; |
403 | } |
404 | Pmin_t2[numPdGainsUsed] = (int16_t) |
405 | (Pmin_t2[numPdGainsUsed] / 2); |
406 | Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
407 | if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) |
408 | Pmax_t2[numPdGainsUsed] = |
409 | pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
410 | Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); |
411 | ar2316FillVpdTable( |
412 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
413 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), |
414 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L |
415 | ); |
416 | ar2316FillVpdTable( |
417 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
418 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), |
419 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R |
420 | ); |
421 | for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { |
422 | VpdTable_I[numPdGainsUsed][kk] = |
423 | interpolate_signed( |
424 | channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], |
425 | (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); |
426 | } |
427 | /* fill VpdTable_I for this pdGain */ |
428 | numPdGainsUsed++; |
429 | } |
430 | /* if this pdGain is used */ |
431 | } |
432 | |
433 | *pMinCalPower = Pmin_t2[0]; |
434 | kk = 0; /* index for the final table */ |
435 | for (ii = 0; ii < numPdGainsUsed; ii++) { |
436 | if (ii == (numPdGainsUsed - 1)) |
437 | pPdGainBoundaries[ii] = Pmax_t2[ii] + |
438 | PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; |
439 | else |
440 | pPdGainBoundaries[ii] = (uint16_t) |
441 | ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); |
442 | if (pPdGainBoundaries[ii] > 63) { |
443 | HALDEBUG(ah, HAL_DEBUG_ANY, |
444 | "%s: clamp pPdGainBoundaries[%d] %d\n" , |
445 | __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ |
446 | pPdGainBoundaries[ii] = 63; |
447 | } |
448 | |
449 | /* Find starting index for this pdGain */ |
450 | if (ii == 0) |
451 | ss = 0; /* for the first pdGain, start from index 0 */ |
452 | else |
453 | ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - |
454 | pdGainOverlap_t2; |
455 | Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); |
456 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
457 | /* |
458 | *-ve ss indicates need to extrapolate data below for this pdGain |
459 | */ |
460 | while (ss < 0) { |
461 | tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); |
462 | pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); |
463 | ss++; |
464 | } |
465 | |
466 | sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; |
467 | tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; |
468 | maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; |
469 | |
470 | while (ss < (int16_t)maxIndex) |
471 | pPDADCValues[kk++] = VpdTable_I[ii][ss++]; |
472 | |
473 | Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - |
474 | VpdTable_I[ii][sizeCurrVpdTable-2]); |
475 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
476 | /* |
477 | * for last gain, pdGainBoundary == Pmax_t2, so will |
478 | * have to extrapolate |
479 | */ |
480 | if (tgtIndex > maxIndex) { /* need to extrapolate above */ |
481 | while(ss < (int16_t)tgtIndex) { |
482 | tmpVal = (uint16_t) |
483 | (VpdTable_I[ii][sizeCurrVpdTable-1] + |
484 | (ss-maxIndex)*Vpd_step); |
485 | pPDADCValues[kk++] = (tmpVal > 127) ? |
486 | 127 : tmpVal; |
487 | ss++; |
488 | } |
489 | } /* extrapolated above */ |
490 | } /* for all pdGainUsed */ |
491 | |
492 | while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { |
493 | pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; |
494 | ii++; |
495 | } |
496 | while (kk < 128) { |
497 | pPDADCValues[kk] = pPDADCValues[kk-1]; |
498 | kk++; |
499 | } |
500 | |
501 | return numPdGainsUsed; |
502 | #undef VpdTable_L |
503 | #undef VpdTable_R |
504 | #undef VpdTable_I |
505 | } |
506 | |
507 | static HAL_BOOL |
508 | ar2316SetPowerTable(struct ath_hal *ah, |
509 | int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, |
510 | uint16_t *rfXpdGain) |
511 | { |
512 | struct ath_hal_5212 *ahp = AH5212(ah); |
513 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
514 | const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL; |
515 | uint16_t pdGainOverlap_t2; |
516 | int16_t minCalPower2316_t2; |
517 | uint16_t *pdadcValues = ahp->ah_pcdacTable; |
518 | uint16_t gainBoundaries[4]; |
519 | uint32_t reg32, regoffset; |
520 | int i, numPdGainsUsed; |
521 | #ifndef AH_USE_INIPDGAIN |
522 | uint32_t tpcrg1; |
523 | #endif |
524 | |
525 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n" , |
526 | __func__, chan->channel,chan->channelFlags); |
527 | |
528 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
529 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
530 | else if (IS_CHAN_B(chan)) |
531 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
532 | else { |
533 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n" , __func__); |
534 | return AH_FALSE; |
535 | } |
536 | |
537 | pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), |
538 | AR_PHY_TPCRG5_PD_GAIN_OVERLAP); |
539 | |
540 | numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah, |
541 | chan->channel, pRawDataset, pdGainOverlap_t2, |
542 | &minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues); |
543 | HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); |
544 | |
545 | #ifdef AH_USE_INIPDGAIN |
546 | /* |
547 | * Use pd_gains curve from eeprom; Atheros always uses |
548 | * the default curve from the ini file but some vendors |
549 | * (e.g. Zcomax) want to override this curve and not |
550 | * honoring their settings results in tx power 5dBm low. |
551 | */ |
552 | OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
553 | (pRawDataset->pDataPerChannel[0].numPdGains - 1)); |
554 | #else |
555 | tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); |
556 | tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) |
557 | | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); |
558 | switch (numPdGainsUsed) { |
559 | case 3: |
560 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; |
561 | tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); |
562 | /* fall thru... */ |
563 | case 2: |
564 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; |
565 | tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); |
566 | /* fall thru... */ |
567 | case 1: |
568 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; |
569 | tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); |
570 | break; |
571 | } |
572 | #ifdef AH_DEBUG |
573 | if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) |
574 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " |
575 | "pd_gains (default 0x%x, calculated 0x%x)\n" , |
576 | __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); |
577 | #endif |
578 | OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); |
579 | #endif |
580 | |
581 | /* |
582 | * Note the pdadc table may not start at 0 dBm power, could be |
583 | * negative or greater than 0. Need to offset the power |
584 | * values by the amount of minPower for griffin |
585 | */ |
586 | if (minCalPower2316_t2 != 0) |
587 | ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2); |
588 | else |
589 | ahp->ah_txPowerIndexOffset = 0; |
590 | |
591 | /* Finally, write the power values into the baseband power table */ |
592 | regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ |
593 | for (i = 0; i < 32; i++) { |
594 | reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | |
595 | ((pdadcValues[4*i + 1] & 0xFF) << 8) | |
596 | ((pdadcValues[4*i + 2] & 0xFF) << 16) | |
597 | ((pdadcValues[4*i + 3] & 0xFF) << 24) ; |
598 | OS_REG_WRITE(ah, regoffset, reg32); |
599 | regoffset += 4; |
600 | } |
601 | |
602 | OS_REG_WRITE(ah, AR_PHY_TPCRG5, |
603 | SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
604 | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
605 | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
606 | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
607 | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
608 | |
609 | return AH_TRUE; |
610 | } |
611 | |
612 | static int16_t |
613 | ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data) |
614 | { |
615 | uint32_t ii,jj; |
616 | uint16_t Pmin=0,numVpd; |
617 | |
618 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
619 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
620 | /* work backwards 'cause highest pdGain for lowest power */ |
621 | numVpd = data->pDataPerPDGain[jj].numVpd; |
622 | if (numVpd > 0) { |
623 | Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; |
624 | return(Pmin); |
625 | } |
626 | } |
627 | return(Pmin); |
628 | } |
629 | |
630 | static int16_t |
631 | ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data) |
632 | { |
633 | uint32_t ii; |
634 | uint16_t Pmax=0,numVpd; |
635 | |
636 | for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
637 | /* work forwards cuase lowest pdGain for highest power */ |
638 | numVpd = data->pDataPerPDGain[ii].numVpd; |
639 | if (numVpd > 0) { |
640 | Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; |
641 | return(Pmax); |
642 | } |
643 | } |
644 | return(Pmax); |
645 | } |
646 | |
647 | static HAL_BOOL |
648 | ar2316GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, |
649 | int16_t *maxPow, int16_t *minPow) |
650 | { |
651 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
652 | const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL; |
653 | const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL; |
654 | uint16_t numChannels; |
655 | int totalD,totalF, totalMin,last, i; |
656 | |
657 | *maxPow = 0; |
658 | |
659 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
660 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
661 | else if (IS_CHAN_B(chan)) |
662 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
663 | else |
664 | return(AH_FALSE); |
665 | |
666 | numChannels = pRawDataset->numChannels; |
667 | data = pRawDataset->pDataPerChannel; |
668 | |
669 | /* Make sure the channel is in the range of the TP values |
670 | * (freq piers) |
671 | */ |
672 | if (numChannels < 1) |
673 | return(AH_FALSE); |
674 | |
675 | if ((chan->channel < data[0].channelValue) || |
676 | (chan->channel > data[numChannels-1].channelValue)) { |
677 | if (chan->channel < data[0].channelValue) { |
678 | *maxPow = ar2316GetMaxPower(ah, &data[0]); |
679 | *minPow = ar2316GetMinPower(ah, &data[0]); |
680 | return(AH_TRUE); |
681 | } else { |
682 | *maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]); |
683 | *minPow = ar2316GetMinPower(ah, &data[numChannels - 1]); |
684 | return(AH_TRUE); |
685 | } |
686 | } |
687 | |
688 | /* Linearly interpolate the power value now */ |
689 | for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); |
690 | last = i++); |
691 | totalD = data[i].channelValue - data[last].channelValue; |
692 | if (totalD > 0) { |
693 | totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]); |
694 | *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + |
695 | ar2316GetMaxPower(ah, &data[last])*totalD)/totalD); |
696 | totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]); |
697 | *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + |
698 | ar2316GetMinPower(ah, &data[last])*totalD)/totalD); |
699 | return(AH_TRUE); |
700 | } else { |
701 | if (chan->channel == data[i].channelValue) { |
702 | *maxPow = ar2316GetMaxPower(ah, &data[i]); |
703 | *minPow = ar2316GetMinPower(ah, &data[i]); |
704 | return(AH_TRUE); |
705 | } else |
706 | return(AH_FALSE); |
707 | } |
708 | } |
709 | |
710 | /* |
711 | * Free memory for analog bank scratch buffers |
712 | */ |
713 | static void |
714 | ar2316RfDetach(struct ath_hal *ah) |
715 | { |
716 | struct ath_hal_5212 *ahp = AH5212(ah); |
717 | |
718 | HALASSERT(ahp->ah_rfHal != AH_NULL); |
719 | ath_hal_free(ahp->ah_rfHal); |
720 | ahp->ah_rfHal = AH_NULL; |
721 | } |
722 | |
723 | /* |
724 | * Allocate memory for private state. |
725 | * Scratch Buffer will be reinitialized every reset so no need to zero now |
726 | */ |
727 | static HAL_BOOL |
728 | ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status) |
729 | { |
730 | struct ath_hal_5212 *ahp = AH5212(ah); |
731 | struct ar2316State *priv; |
732 | |
733 | HALASSERT(ah->ah_magic == AR5212_MAGIC); |
734 | |
735 | HALASSERT(ahp->ah_rfHal == AH_NULL); |
736 | priv = ath_hal_malloc(sizeof(struct ar2316State)); |
737 | if (priv == AH_NULL) { |
738 | HALDEBUG(ah, HAL_DEBUG_ANY, |
739 | "%s: cannot allocate private state\n" , __func__); |
740 | *status = HAL_ENOMEM; /* XXX */ |
741 | return AH_FALSE; |
742 | } |
743 | priv->base.rfDetach = ar2316RfDetach; |
744 | priv->base.writeRegs = ar2316WriteRegs; |
745 | priv->base.getRfBank = ar2316GetRfBank; |
746 | priv->base.setChannel = ar2316SetChannel; |
747 | priv->base.setRfRegs = ar2316SetRfRegs; |
748 | priv->base.setPowerTable = ar2316SetPowerTable; |
749 | priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower; |
750 | priv->base.getNfAdjust = ar5212GetNfAdjust; |
751 | |
752 | ahp->ah_pcdacTable = priv->pcdacTable; |
753 | ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); |
754 | ahp->ah_rfHal = &priv->base; |
755 | |
756 | ahp->ah_cwCalRequire = AH_TRUE; /* force initial cal */ |
757 | |
758 | return AH_TRUE; |
759 | } |
760 | |
761 | static HAL_BOOL |
762 | ar2316Probe(struct ath_hal *ah) |
763 | { |
764 | return IS_2316(ah); |
765 | } |
766 | AH_RF(RF2316, ar2316Probe, ar2316RfAttach); |
767 | |