1 | /* |
2 | * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting |
3 | * Copyright (c) 2002-2008 Atheros Communications, Inc. |
4 | * |
5 | * Permission to use, copy, modify, and/or distribute this software for any |
6 | * purpose with or without fee is hereby granted, provided that the above |
7 | * copyright notice and this permission notice appear in all copies. |
8 | * |
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
16 | * |
17 | * $Id: ar2317.c,v 1.4 2013/09/12 12:03:33 martin Exp $ |
18 | */ |
19 | #include "opt_ah.h" |
20 | |
21 | #include "ah.h" |
22 | #include "ah_devid.h" |
23 | #include "ah_internal.h" |
24 | |
25 | #include "ar5212/ar5212.h" |
26 | #include "ar5212/ar5212reg.h" |
27 | #include "ar5212/ar5212phy.h" |
28 | |
29 | #include "ah_eeprom_v3.h" |
30 | |
31 | #define AH_5212_2317 |
32 | #include "ar5212/ar5212.ini" |
33 | |
34 | #define N(a) (sizeof(a)/sizeof(a[0])) |
35 | |
36 | typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317; |
37 | typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317; |
38 | #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413 |
39 | |
40 | struct ar2317State { |
41 | RF_HAL_FUNCS base; /* public state, must be first */ |
42 | uint16_t pcdacTable[PWR_TABLE_SIZE_2317]; |
43 | |
44 | uint32_t Bank1Data[N(ar5212Bank1_2317)]; |
45 | uint32_t Bank2Data[N(ar5212Bank2_2317)]; |
46 | uint32_t Bank3Data[N(ar5212Bank3_2317)]; |
47 | uint32_t Bank6Data[N(ar5212Bank6_2317)]; |
48 | uint32_t Bank7Data[N(ar5212Bank7_2317)]; |
49 | |
50 | /* |
51 | * Private state for reduced stack usage. |
52 | */ |
53 | /* filled out Vpd table for all pdGains (chanL) */ |
54 | uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] |
55 | [MAX_PWR_RANGE_IN_HALF_DB]; |
56 | /* filled out Vpd table for all pdGains (chanR) */ |
57 | uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] |
58 | [MAX_PWR_RANGE_IN_HALF_DB]; |
59 | /* filled out Vpd table for all pdGains (interpolated) */ |
60 | uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] |
61 | [MAX_PWR_RANGE_IN_HALF_DB]; |
62 | }; |
63 | #define AR2317(ah) ((struct ar2317State *) AH5212(ah)->ah_rfHal) |
64 | |
65 | extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, |
66 | uint32_t numBits, uint32_t firstBit, uint32_t column); |
67 | |
68 | static void |
69 | ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, |
70 | int writes) |
71 | { |
72 | HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes); |
73 | HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes); |
74 | HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes); |
75 | } |
76 | |
77 | /* |
78 | * Take the MHz channel value and set the Channel value |
79 | * |
80 | * ASSUMES: Writes enabled to analog bus |
81 | */ |
82 | static HAL_BOOL |
83 | ar2317SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) |
84 | { |
85 | uint32_t channelSel = 0; |
86 | uint32_t bModeSynth = 0; |
87 | uint32_t aModeRefSel = 0; |
88 | uint32_t reg32 = 0; |
89 | |
90 | OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); |
91 | |
92 | if (chan->channel < 4800) { |
93 | uint32_t txctl; |
94 | channelSel = chan->channel - 2272 ; |
95 | channelSel = ath_hal_reverseBits(channelSel, 8); |
96 | |
97 | txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); |
98 | if (chan->channel == 2484) { |
99 | /* Enable channel spreading for channel 14 */ |
100 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
101 | txctl | AR_PHY_CCK_TX_CTRL_JAPAN); |
102 | } else { |
103 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
104 | txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); |
105 | } |
106 | } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { |
107 | channelSel = ath_hal_reverseBits( |
108 | ((chan->channel - 4800) / 20 << 2), 8); |
109 | aModeRefSel = ath_hal_reverseBits(3, 2); |
110 | } else if ((chan->channel % 10) == 0) { |
111 | channelSel = ath_hal_reverseBits( |
112 | ((chan->channel - 4800) / 10 << 1), 8); |
113 | aModeRefSel = ath_hal_reverseBits(2, 2); |
114 | } else if ((chan->channel % 5) == 0) { |
115 | channelSel = ath_hal_reverseBits( |
116 | (chan->channel - 4800) / 5, 8); |
117 | aModeRefSel = ath_hal_reverseBits(1, 2); |
118 | } else { |
119 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n" , |
120 | __func__, chan->channel); |
121 | return AH_FALSE; |
122 | } |
123 | |
124 | reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | |
125 | (1 << 12) | 0x1; |
126 | OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); |
127 | |
128 | reg32 >>= 8; |
129 | OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); |
130 | |
131 | AH_PRIVATE(ah)->ah_curchan = chan; |
132 | return AH_TRUE; |
133 | } |
134 | |
135 | /* |
136 | * Reads EEPROM header info from device structure and programs |
137 | * all rf registers |
138 | * |
139 | * REQUIRES: Access to the analog rf device |
140 | */ |
141 | static HAL_BOOL |
142 | ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain) |
143 | { |
144 | #define RF_BANK_SETUP(_priv, _ix, _col) do { \ |
145 | int i; \ |
146 | for (i = 0; i < N(ar5212Bank##_ix##_2317); i++) \ |
147 | (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\ |
148 | } while (0) |
149 | struct ath_hal_5212 *ahp = AH5212(ah); |
150 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
151 | uint16_t ob2GHz = 0, db2GHz = 0; |
152 | struct ar2317State *priv = AR2317(ah); |
153 | int regWrites = 0; |
154 | |
155 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, |
156 | "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n" , |
157 | __func__, chan->channel, chan->channelFlags, modesIndex); |
158 | |
159 | HALASSERT(priv); |
160 | |
161 | /* Setup rf parameters */ |
162 | switch (chan->channelFlags & CHANNEL_ALL) { |
163 | case CHANNEL_B: |
164 | ob2GHz = ee->ee_obFor24; |
165 | db2GHz = ee->ee_dbFor24; |
166 | break; |
167 | case CHANNEL_G: |
168 | case CHANNEL_108G: |
169 | ob2GHz = ee->ee_obFor24g; |
170 | db2GHz = ee->ee_dbFor24g; |
171 | break; |
172 | default: |
173 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n" , |
174 | __func__, chan->channelFlags); |
175 | return AH_FALSE; |
176 | } |
177 | |
178 | /* Bank 1 Write */ |
179 | RF_BANK_SETUP(priv, 1, 1); |
180 | |
181 | /* Bank 2 Write */ |
182 | RF_BANK_SETUP(priv, 2, modesIndex); |
183 | |
184 | /* Bank 3 Write */ |
185 | RF_BANK_SETUP(priv, 3, modesIndex); |
186 | |
187 | /* Bank 6 Write */ |
188 | RF_BANK_SETUP(priv, 6, modesIndex); |
189 | |
190 | ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0); |
191 | ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0); |
192 | |
193 | /* Bank 7 Setup */ |
194 | RF_BANK_SETUP(priv, 7, modesIndex); |
195 | |
196 | /* Write Analog registers */ |
197 | HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites); |
198 | HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites); |
199 | HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites); |
200 | HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites); |
201 | HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites); |
202 | /* Now that we have reprogrammed rfgain value, clear the flag. */ |
203 | ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; |
204 | |
205 | return AH_TRUE; |
206 | #undef RF_BANK_SETUP |
207 | } |
208 | |
209 | /* |
210 | * Return a reference to the requested RF Bank. |
211 | */ |
212 | static uint32_t * |
213 | ar2317GetRfBank(struct ath_hal *ah, int bank) |
214 | { |
215 | struct ar2317State *priv = AR2317(ah); |
216 | |
217 | HALASSERT(priv != AH_NULL); |
218 | switch (bank) { |
219 | case 1: return priv->Bank1Data; |
220 | case 2: return priv->Bank2Data; |
221 | case 3: return priv->Bank3Data; |
222 | case 6: return priv->Bank6Data; |
223 | case 7: return priv->Bank7Data; |
224 | } |
225 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n" , |
226 | __func__, bank); |
227 | return AH_NULL; |
228 | } |
229 | |
230 | /* |
231 | * Return indices surrounding the value in sorted integer lists. |
232 | * |
233 | * NB: the input list is assumed to be sorted in ascending order |
234 | */ |
235 | static void |
236 | GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, |
237 | uint32_t *vlo, uint32_t *vhi) |
238 | { |
239 | int16_t target = v; |
240 | const int16_t *ep = lp+listSize; |
241 | const int16_t *tp; |
242 | |
243 | /* |
244 | * Check first and last elements for out-of-bounds conditions. |
245 | */ |
246 | if (target < lp[0]) { |
247 | *vlo = *vhi = 0; |
248 | return; |
249 | } |
250 | if (target >= ep[-1]) { |
251 | *vlo = *vhi = listSize - 1; |
252 | return; |
253 | } |
254 | |
255 | /* look for value being near or between 2 values in list */ |
256 | for (tp = lp; tp < ep; tp++) { |
257 | /* |
258 | * If value is close to the current value of the list |
259 | * then target is not between values, it is one of the values |
260 | */ |
261 | if (*tp == target) { |
262 | *vlo = *vhi = tp - (const int16_t *) lp; |
263 | return; |
264 | } |
265 | /* |
266 | * Look for value being between current value and next value |
267 | * if so return these 2 values |
268 | */ |
269 | if (target < tp[1]) { |
270 | *vlo = tp - (const int16_t *) lp; |
271 | *vhi = *vlo + 1; |
272 | return; |
273 | } |
274 | } |
275 | } |
276 | |
277 | /* |
278 | * Fill the Vpdlist for indices Pmax-Pmin |
279 | */ |
280 | static HAL_BOOL |
281 | ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, |
282 | const int16_t *pwrList, const int16_t *VpdList, |
283 | uint16_t numIntercepts, uint16_t retVpdList[][64]) |
284 | { |
285 | uint16_t ii, kk; |
286 | int16_t currPwr = (int16_t)(2*Pmin); |
287 | /* since Pmin is pwr*2 and pwrList is 4*pwr */ |
288 | uint32_t idxL = 0, idxR = 0; |
289 | |
290 | ii = 0; |
291 | |
292 | if (numIntercepts < 2) |
293 | return AH_FALSE; |
294 | |
295 | while (ii <= (uint16_t)(Pmax - Pmin)) { |
296 | GetLowerUpperIndex(currPwr, pwrList, numIntercepts, |
297 | &(idxL), &(idxR)); |
298 | if (idxR < 1) |
299 | idxR = 1; /* extrapolate below */ |
300 | if (idxL == (uint32_t)(numIntercepts - 1)) |
301 | idxL = numIntercepts - 2; /* extrapolate above */ |
302 | if (pwrList[idxL] == pwrList[idxR]) |
303 | kk = VpdList[idxL]; |
304 | else |
305 | kk = (uint16_t) |
306 | (((currPwr - pwrList[idxL])*VpdList[idxR]+ |
307 | (pwrList[idxR] - currPwr)*VpdList[idxL])/ |
308 | (pwrList[idxR] - pwrList[idxL])); |
309 | retVpdList[pdGainIdx][ii] = kk; |
310 | ii++; |
311 | currPwr += 2; /* half dB steps */ |
312 | } |
313 | |
314 | return AH_TRUE; |
315 | } |
316 | |
317 | /* |
318 | * Returns interpolated or the scaled up interpolated value |
319 | */ |
320 | static int16_t |
321 | interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, |
322 | int16_t targetLeft, int16_t targetRight) |
323 | { |
324 | int16_t rv; |
325 | |
326 | if (srcRight != srcLeft) { |
327 | rv = ((target - srcLeft)*targetRight + |
328 | (srcRight - target)*targetLeft) / (srcRight - srcLeft); |
329 | } else { |
330 | rv = targetLeft; |
331 | } |
332 | return rv; |
333 | } |
334 | |
335 | /* |
336 | * Uses the data points read from EEPROM to reconstruct the pdadc power table |
337 | * Called by ar2317SetPowerTable() |
338 | */ |
339 | static int |
340 | ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, |
341 | const RAW_DATA_STRUCT_2317 *pRawDataset, |
342 | uint16_t pdGainOverlap_t2, |
343 | int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], |
344 | uint16_t pPdGainValues[], uint16_t pPDADCValues[]) |
345 | { |
346 | struct ar2317State *priv = AR2317(ah); |
347 | #define VpdTable_L priv->vpdTable_L |
348 | #define VpdTable_R priv->vpdTable_R |
349 | #define VpdTable_I priv->vpdTable_I |
350 | /* XXX excessive stack usage? */ |
351 | uint32_t ii, jj, kk; |
352 | int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ |
353 | uint32_t idxL = 0, idxR = 0; |
354 | uint32_t numPdGainsUsed = 0; |
355 | /* |
356 | * If desired to support -ve power levels in future, just |
357 | * change pwr_I_0 to signed 5-bits. |
358 | */ |
359 | int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
360 | /* to accomodate -ve power levels later on. */ |
361 | int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
362 | /* to accomodate -ve power levels later on */ |
363 | uint16_t numVpd = 0; |
364 | uint16_t Vpd_step; |
365 | int16_t tmpVal ; |
366 | uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; |
367 | |
368 | /* Get upper lower index */ |
369 | GetLowerUpperIndex(channel, pRawDataset->pChannels, |
370 | pRawDataset->numChannels, &(idxL), &(idxR)); |
371 | |
372 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
373 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
374 | /* work backwards 'cause highest pdGain for lowest power */ |
375 | numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; |
376 | if (numVpd > 0) { |
377 | pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; |
378 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; |
379 | if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { |
380 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; |
381 | } |
382 | Pmin_t2[numPdGainsUsed] = (int16_t) |
383 | (Pmin_t2[numPdGainsUsed] / 2); |
384 | Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
385 | if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) |
386 | Pmax_t2[numPdGainsUsed] = |
387 | pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
388 | Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); |
389 | ar2317FillVpdTable( |
390 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
391 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), |
392 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L |
393 | ); |
394 | ar2317FillVpdTable( |
395 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
396 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), |
397 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R |
398 | ); |
399 | for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { |
400 | VpdTable_I[numPdGainsUsed][kk] = |
401 | interpolate_signed( |
402 | channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], |
403 | (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); |
404 | } |
405 | /* fill VpdTable_I for this pdGain */ |
406 | numPdGainsUsed++; |
407 | } |
408 | /* if this pdGain is used */ |
409 | } |
410 | |
411 | *pMinCalPower = Pmin_t2[0]; |
412 | kk = 0; /* index for the final table */ |
413 | for (ii = 0; ii < numPdGainsUsed; ii++) { |
414 | if (ii == (numPdGainsUsed - 1)) |
415 | pPdGainBoundaries[ii] = Pmax_t2[ii] + |
416 | PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; |
417 | else |
418 | pPdGainBoundaries[ii] = (uint16_t) |
419 | ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); |
420 | if (pPdGainBoundaries[ii] > 63) { |
421 | HALDEBUG(ah, HAL_DEBUG_ANY, |
422 | "%s: clamp pPdGainBoundaries[%d] %d\n" , |
423 | __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ |
424 | pPdGainBoundaries[ii] = 63; |
425 | } |
426 | |
427 | /* Find starting index for this pdGain */ |
428 | if (ii == 0) |
429 | ss = 0; /* for the first pdGain, start from index 0 */ |
430 | else |
431 | ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - |
432 | pdGainOverlap_t2; |
433 | Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); |
434 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
435 | /* |
436 | *-ve ss indicates need to extrapolate data below for this pdGain |
437 | */ |
438 | while (ss < 0) { |
439 | tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); |
440 | pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); |
441 | ss++; |
442 | } |
443 | |
444 | sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; |
445 | tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; |
446 | maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; |
447 | |
448 | while (ss < (int16_t)maxIndex) |
449 | pPDADCValues[kk++] = VpdTable_I[ii][ss++]; |
450 | |
451 | Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - |
452 | VpdTable_I[ii][sizeCurrVpdTable-2]); |
453 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
454 | /* |
455 | * for last gain, pdGainBoundary == Pmax_t2, so will |
456 | * have to extrapolate |
457 | */ |
458 | if (tgtIndex > maxIndex) { /* need to extrapolate above */ |
459 | while(ss < (int16_t)tgtIndex) { |
460 | tmpVal = (uint16_t) |
461 | (VpdTable_I[ii][sizeCurrVpdTable-1] + |
462 | (ss-maxIndex)*Vpd_step); |
463 | pPDADCValues[kk++] = (tmpVal > 127) ? |
464 | 127 : tmpVal; |
465 | ss++; |
466 | } |
467 | } /* extrapolated above */ |
468 | } /* for all pdGainUsed */ |
469 | |
470 | while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { |
471 | pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; |
472 | ii++; |
473 | } |
474 | while (kk < 128) { |
475 | pPDADCValues[kk] = pPDADCValues[kk-1]; |
476 | kk++; |
477 | } |
478 | |
479 | return numPdGainsUsed; |
480 | #undef VpdTable_L |
481 | #undef VpdTable_R |
482 | #undef VpdTable_I |
483 | } |
484 | |
485 | static HAL_BOOL |
486 | ar2317SetPowerTable(struct ath_hal *ah, |
487 | int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, |
488 | uint16_t *rfXpdGain) |
489 | { |
490 | struct ath_hal_5212 *ahp = AH5212(ah); |
491 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
492 | const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL; |
493 | uint16_t pdGainOverlap_t2; |
494 | int16_t minCalPower2317_t2; |
495 | uint16_t *pdadcValues = ahp->ah_pcdacTable; |
496 | uint16_t gainBoundaries[4]; |
497 | uint32_t reg32, regoffset; |
498 | int i, numPdGainsUsed; |
499 | #ifndef AH_USE_INIPDGAIN |
500 | uint32_t tpcrg1; |
501 | #endif |
502 | |
503 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n" , |
504 | __func__, chan->channel,chan->channelFlags); |
505 | |
506 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
507 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
508 | else if (IS_CHAN_B(chan)) |
509 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
510 | else { |
511 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n" , __func__); |
512 | return AH_FALSE; |
513 | } |
514 | |
515 | pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), |
516 | AR_PHY_TPCRG5_PD_GAIN_OVERLAP); |
517 | |
518 | numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah, |
519 | chan->channel, pRawDataset, pdGainOverlap_t2, |
520 | &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues); |
521 | HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); |
522 | |
523 | #ifdef AH_USE_INIPDGAIN |
524 | /* |
525 | * Use pd_gains curve from eeprom; Atheros always uses |
526 | * the default curve from the ini file but some vendors |
527 | * (e.g. Zcomax) want to override this curve and not |
528 | * honoring their settings results in tx power 5dBm low. |
529 | */ |
530 | OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
531 | (pRawDataset->pDataPerChannel[0].numPdGains - 1)); |
532 | #else |
533 | tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); |
534 | tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) |
535 | | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); |
536 | switch (numPdGainsUsed) { |
537 | case 3: |
538 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; |
539 | tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); |
540 | /* fall thru... */ |
541 | case 2: |
542 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; |
543 | tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); |
544 | /* fall thru... */ |
545 | case 1: |
546 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; |
547 | tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); |
548 | break; |
549 | } |
550 | #ifdef AH_DEBUG |
551 | if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) |
552 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " |
553 | "pd_gains (default 0x%x, calculated 0x%x)\n" , |
554 | __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); |
555 | #endif |
556 | OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); |
557 | #endif |
558 | |
559 | /* |
560 | * Note the pdadc table may not start at 0 dBm power, could be |
561 | * negative or greater than 0. Need to offset the power |
562 | * values by the amount of minPower for griffin |
563 | */ |
564 | if (minCalPower2317_t2 != 0) |
565 | ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2); |
566 | else |
567 | ahp->ah_txPowerIndexOffset = 0; |
568 | |
569 | /* Finally, write the power values into the baseband power table */ |
570 | regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ |
571 | for (i = 0; i < 32; i++) { |
572 | reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | |
573 | ((pdadcValues[4*i + 1] & 0xFF) << 8) | |
574 | ((pdadcValues[4*i + 2] & 0xFF) << 16) | |
575 | ((pdadcValues[4*i + 3] & 0xFF) << 24) ; |
576 | OS_REG_WRITE(ah, regoffset, reg32); |
577 | regoffset += 4; |
578 | } |
579 | |
580 | OS_REG_WRITE(ah, AR_PHY_TPCRG5, |
581 | SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
582 | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
583 | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
584 | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
585 | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
586 | |
587 | return AH_TRUE; |
588 | } |
589 | |
590 | static int16_t |
591 | ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data) |
592 | { |
593 | uint32_t ii,jj; |
594 | uint16_t Pmin=0,numVpd; |
595 | |
596 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
597 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
598 | /* work backwards 'cause highest pdGain for lowest power */ |
599 | numVpd = data->pDataPerPDGain[jj].numVpd; |
600 | if (numVpd > 0) { |
601 | Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; |
602 | return(Pmin); |
603 | } |
604 | } |
605 | return(Pmin); |
606 | } |
607 | |
608 | static int16_t |
609 | ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data) |
610 | { |
611 | uint32_t ii; |
612 | uint16_t Pmax=0,numVpd; |
613 | |
614 | for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
615 | /* work forwards cuase lowest pdGain for highest power */ |
616 | numVpd = data->pDataPerPDGain[ii].numVpd; |
617 | if (numVpd > 0) { |
618 | Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; |
619 | return(Pmax); |
620 | } |
621 | } |
622 | return(Pmax); |
623 | } |
624 | |
625 | static HAL_BOOL |
626 | ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, |
627 | int16_t *maxPow, int16_t *minPow) |
628 | { |
629 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
630 | const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL; |
631 | const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL; |
632 | uint16_t numChannels; |
633 | int totalD,totalF, totalMin,last, i; |
634 | |
635 | *maxPow = 0; |
636 | |
637 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
638 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
639 | else if (IS_CHAN_B(chan)) |
640 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
641 | else |
642 | return(AH_FALSE); |
643 | |
644 | numChannels = pRawDataset->numChannels; |
645 | data = pRawDataset->pDataPerChannel; |
646 | |
647 | /* Make sure the channel is in the range of the TP values |
648 | * (freq piers) |
649 | */ |
650 | if (numChannels < 1) |
651 | return(AH_FALSE); |
652 | |
653 | if ((chan->channel < data[0].channelValue) || |
654 | (chan->channel > data[numChannels-1].channelValue)) { |
655 | if (chan->channel < data[0].channelValue) { |
656 | *maxPow = ar2317GetMaxPower(ah, &data[0]); |
657 | *minPow = ar2317GetMinPower(ah, &data[0]); |
658 | return(AH_TRUE); |
659 | } else { |
660 | *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]); |
661 | *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]); |
662 | return(AH_TRUE); |
663 | } |
664 | } |
665 | |
666 | /* Linearly interpolate the power value now */ |
667 | for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); |
668 | last = i++); |
669 | totalD = data[i].channelValue - data[last].channelValue; |
670 | if (totalD > 0) { |
671 | totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]); |
672 | *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + |
673 | ar2317GetMaxPower(ah, &data[last])*totalD)/totalD); |
674 | totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]); |
675 | *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + |
676 | ar2317GetMinPower(ah, &data[last])*totalD)/totalD); |
677 | return(AH_TRUE); |
678 | } else { |
679 | if (chan->channel == data[i].channelValue) { |
680 | *maxPow = ar2317GetMaxPower(ah, &data[i]); |
681 | *minPow = ar2317GetMinPower(ah, &data[i]); |
682 | return(AH_TRUE); |
683 | } else |
684 | return(AH_FALSE); |
685 | } |
686 | } |
687 | |
688 | /* |
689 | * Free memory for analog bank scratch buffers |
690 | */ |
691 | static void |
692 | ar2317RfDetach(struct ath_hal *ah) |
693 | { |
694 | struct ath_hal_5212 *ahp = AH5212(ah); |
695 | |
696 | HALASSERT(ahp->ah_rfHal != AH_NULL); |
697 | ath_hal_free(ahp->ah_rfHal); |
698 | ahp->ah_rfHal = AH_NULL; |
699 | } |
700 | |
701 | /* |
702 | * Allocate memory for analog bank scratch buffers |
703 | * Scratch Buffer will be reinitialized every reset so no need to zero now |
704 | */ |
705 | static HAL_BOOL |
706 | ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status) |
707 | { |
708 | struct ath_hal_5212 *ahp = AH5212(ah); |
709 | struct ar2317State *priv; |
710 | |
711 | HALASSERT(ah->ah_magic == AR5212_MAGIC); |
712 | |
713 | HALASSERT(ahp->ah_rfHal == AH_NULL); |
714 | priv = ath_hal_malloc(sizeof(struct ar2317State)); |
715 | if (priv == AH_NULL) { |
716 | HALDEBUG(ah, HAL_DEBUG_ANY, |
717 | "%s: cannot allocate private state\n" , __func__); |
718 | *status = HAL_ENOMEM; /* XXX */ |
719 | return AH_FALSE; |
720 | } |
721 | priv->base.rfDetach = ar2317RfDetach; |
722 | priv->base.writeRegs = ar2317WriteRegs; |
723 | priv->base.getRfBank = ar2317GetRfBank; |
724 | priv->base.setChannel = ar2317SetChannel; |
725 | priv->base.setRfRegs = ar2317SetRfRegs; |
726 | priv->base.setPowerTable = ar2317SetPowerTable; |
727 | priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower; |
728 | priv->base.getNfAdjust = ar5212GetNfAdjust; |
729 | |
730 | ahp->ah_pcdacTable = priv->pcdacTable; |
731 | ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); |
732 | ahp->ah_rfHal = &priv->base; |
733 | |
734 | return AH_TRUE; |
735 | } |
736 | |
737 | static HAL_BOOL |
738 | ar2317Probe(struct ath_hal *ah) |
739 | { |
740 | return IS_2317(ah); |
741 | } |
742 | AH_RF(RF2317, ar2317Probe, ar2317RfAttach); |
743 | |