1 | /* $NetBSD: sv.c,v 1.51 2016/07/14 10:19:06 msaitoh Exp $ */ |
2 | /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ |
3 | |
4 | /* |
5 | * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc. |
6 | * All rights reserved. |
7 | * |
8 | * This code is derived from software contributed to The NetBSD Foundation |
9 | * by Charles M. Hannum. |
10 | * |
11 | * Redistribution and use in source and binary forms, with or without |
12 | * modification, are permitted provided that the following conditions |
13 | * are met: |
14 | * 1. Redistributions of source code must retain the above copyright |
15 | * notice, this list of conditions and the following disclaimer. |
16 | * 2. Redistributions in binary form must reproduce the above copyright |
17 | * notice, this list of conditions and the following disclaimer in the |
18 | * documentation and/or other materials provided with the distribution. |
19 | * |
20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
30 | * POSSIBILITY OF SUCH DAMAGE. |
31 | */ |
32 | |
33 | /* |
34 | * Copyright (c) 1998 Constantine Paul Sapuntzakis |
35 | * All rights reserved |
36 | * |
37 | * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) |
38 | * |
39 | * Redistribution and use in source and binary forms, with or without |
40 | * modification, are permitted provided that the following conditions |
41 | * are met: |
42 | * 1. Redistributions of source code must retain the above copyright |
43 | * notice, this list of conditions and the following disclaimer. |
44 | * 2. Redistributions in binary form must reproduce the above copyright |
45 | * notice, this list of conditions and the following disclaimer in the |
46 | * documentation and/or other materials provided with the distribution. |
47 | * 3. The author's name or those of the contributors may be used to |
48 | * endorse or promote products derived from this software without |
49 | * specific prior written permission. |
50 | * |
51 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS |
52 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
53 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
54 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
55 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
56 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
57 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
58 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
59 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
61 | * POSSIBILITY OF SUCH DAMAGE. |
62 | */ |
63 | |
64 | /* |
65 | * S3 SonicVibes driver |
66 | * Heavily based on the eap driver by Lennart Augustsson |
67 | */ |
68 | |
69 | #include <sys/cdefs.h> |
70 | __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.51 2016/07/14 10:19:06 msaitoh Exp $" ); |
71 | |
72 | #include <sys/param.h> |
73 | #include <sys/systm.h> |
74 | #include <sys/kernel.h> |
75 | #include <sys/kmem.h> |
76 | #include <sys/device.h> |
77 | |
78 | #include <dev/pci/pcireg.h> |
79 | #include <dev/pci/pcivar.h> |
80 | #include <dev/pci/pcidevs.h> |
81 | |
82 | #include <sys/audioio.h> |
83 | #include <dev/audio_if.h> |
84 | #include <dev/mulaw.h> |
85 | #include <dev/auconv.h> |
86 | |
87 | #include <dev/ic/i8237reg.h> |
88 | #include <dev/pci/svreg.h> |
89 | #include <dev/pci/svvar.h> |
90 | |
91 | #include <sys/bus.h> |
92 | |
93 | /* XXX |
94 | * The SonicVibes DMA is broken and only works on 24-bit addresses. |
95 | * As long as bus_dmamem_alloc_range() is missing we use the ISA |
96 | * DMA tag on i386. |
97 | */ |
98 | #if defined(amd64) || defined(i386) |
99 | #include <dev/isa/isavar.h> |
100 | #endif |
101 | |
102 | #ifdef AUDIO_DEBUG |
103 | #define DPRINTF(x) if (svdebug) printf x |
104 | #define DPRINTFN(n,x) if (svdebug>(n)) printf x |
105 | int svdebug = 0; |
106 | #else |
107 | #define DPRINTF(x) |
108 | #define DPRINTFN(n,x) |
109 | #endif |
110 | |
111 | static int sv_match(device_t, cfdata_t, void *); |
112 | static void sv_attach(device_t, device_t, void *); |
113 | static int sv_intr(void *); |
114 | |
115 | struct sv_dma { |
116 | bus_dmamap_t map; |
117 | void *addr; |
118 | bus_dma_segment_t segs[1]; |
119 | int nsegs; |
120 | size_t size; |
121 | struct sv_dma *next; |
122 | }; |
123 | #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) |
124 | #define KERNADDR(p) ((void *)((p)->addr)) |
125 | |
126 | CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc), |
127 | sv_match, sv_attach, NULL, NULL); |
128 | |
129 | static struct audio_device sv_device = { |
130 | "S3 SonicVibes" , |
131 | "" , |
132 | "sv" |
133 | }; |
134 | |
135 | #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) |
136 | |
137 | static int sv_allocmem(struct sv_softc *, size_t, size_t, int, |
138 | struct sv_dma *); |
139 | static int sv_freemem(struct sv_softc *, struct sv_dma *); |
140 | |
141 | static void sv_init_mixer(struct sv_softc *); |
142 | |
143 | static int sv_open(void *, int); |
144 | static int sv_query_encoding(void *, struct audio_encoding *); |
145 | static int sv_set_params(void *, int, int, audio_params_t *, |
146 | audio_params_t *, stream_filter_list_t *, |
147 | stream_filter_list_t *); |
148 | static int sv_round_blocksize(void *, int, int, const audio_params_t *); |
149 | static int sv_trigger_output(void *, void *, void *, int, void (*)(void *), |
150 | void *, const audio_params_t *); |
151 | static int sv_trigger_input(void *, void *, void *, int, void (*)(void *), |
152 | void *, const audio_params_t *); |
153 | static int sv_halt_output(void *); |
154 | static int sv_halt_input(void *); |
155 | static int sv_getdev(void *, struct audio_device *); |
156 | static int sv_mixer_set_port(void *, mixer_ctrl_t *); |
157 | static int sv_mixer_get_port(void *, mixer_ctrl_t *); |
158 | static int sv_query_devinfo(void *, mixer_devinfo_t *); |
159 | static void * sv_malloc(void *, int, size_t); |
160 | static void sv_free(void *, void *, size_t); |
161 | static size_t sv_round_buffersize(void *, int, size_t); |
162 | static paddr_t sv_mappage(void *, void *, off_t, int); |
163 | static int sv_get_props(void *); |
164 | static void sv_get_locks(void *, kmutex_t **, kmutex_t **); |
165 | |
166 | #ifdef AUDIO_DEBUG |
167 | void sv_dumpregs(struct sv_softc *sc); |
168 | #endif |
169 | |
170 | static const struct audio_hw_if sv_hw_if = { |
171 | sv_open, |
172 | NULL, /* close */ |
173 | NULL, |
174 | sv_query_encoding, |
175 | sv_set_params, |
176 | sv_round_blocksize, |
177 | NULL, |
178 | NULL, |
179 | NULL, |
180 | NULL, |
181 | NULL, |
182 | sv_halt_output, |
183 | sv_halt_input, |
184 | NULL, |
185 | sv_getdev, |
186 | NULL, |
187 | sv_mixer_set_port, |
188 | sv_mixer_get_port, |
189 | sv_query_devinfo, |
190 | sv_malloc, |
191 | sv_free, |
192 | sv_round_buffersize, |
193 | sv_mappage, |
194 | sv_get_props, |
195 | sv_trigger_output, |
196 | sv_trigger_input, |
197 | NULL, |
198 | sv_get_locks, |
199 | }; |
200 | |
201 | #define SV_NFORMATS 4 |
202 | static const struct audio_format sv_formats[SV_NFORMATS] = { |
203 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, |
204 | 2, AUFMT_STEREO, 0, {2000, 48000}}, |
205 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, |
206 | 1, AUFMT_MONAURAL, 0, {2000, 48000}}, |
207 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, |
208 | 2, AUFMT_STEREO, 0, {2000, 48000}}, |
209 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, |
210 | 1, AUFMT_MONAURAL, 0, {2000, 48000}}, |
211 | }; |
212 | |
213 | |
214 | static void |
215 | sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val) |
216 | { |
217 | |
218 | DPRINTFN(8,("sv_write(0x%x, 0x%x)\n" , reg, val)); |
219 | bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); |
220 | } |
221 | |
222 | static uint8_t |
223 | sv_read(struct sv_softc *sc, uint8_t reg) |
224 | { |
225 | uint8_t val; |
226 | |
227 | val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); |
228 | DPRINTFN(8,("sv_read(0x%x) = 0x%x\n" , reg, val)); |
229 | return val; |
230 | } |
231 | |
232 | static uint8_t |
233 | sv_read_indirect(struct sv_softc *sc, uint8_t reg) |
234 | { |
235 | uint8_t val; |
236 | |
237 | sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); |
238 | val = sv_read(sc, SV_CODEC_IDATA); |
239 | return val; |
240 | } |
241 | |
242 | static void |
243 | sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val) |
244 | { |
245 | uint8_t iaddr; |
246 | |
247 | iaddr = reg & SV_IADDR_MASK; |
248 | if (reg == SV_DMA_DATA_FORMAT) |
249 | iaddr |= SV_IADDR_MCE; |
250 | |
251 | sv_write(sc, SV_CODEC_IADDR, iaddr); |
252 | sv_write(sc, SV_CODEC_IDATA, val); |
253 | } |
254 | |
255 | static int |
256 | sv_match(device_t parent, cfdata_t match, void *aux) |
257 | { |
258 | struct pci_attach_args *pa; |
259 | |
260 | pa = aux; |
261 | if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && |
262 | PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) |
263 | return 1; |
264 | |
265 | return 0; |
266 | } |
267 | |
268 | static pcireg_t pci_io_alloc_low, pci_io_alloc_high; |
269 | |
270 | static int |
271 | pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs, |
272 | bus_space_tag_t iot, bus_size_t size, bus_size_t align, |
273 | bus_size_t bound, int flags, bus_space_handle_t *ioh) |
274 | { |
275 | bus_addr_t addr; |
276 | int error; |
277 | |
278 | error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high, |
279 | size, align, bound, flags, &addr, ioh); |
280 | if (error) |
281 | return error; |
282 | |
283 | pci_conf_write(pc, pt, pcioffs, addr); |
284 | return 0; |
285 | } |
286 | |
287 | /* |
288 | * Allocate IO addresses when all other configuration is done. |
289 | */ |
290 | static void |
291 | sv_defer(device_t self) |
292 | { |
293 | struct sv_softc *sc; |
294 | pci_chipset_tag_t pc; |
295 | pcitag_t pt; |
296 | pcireg_t dmaio; |
297 | |
298 | sc = device_private(self); |
299 | pc = sc->sc_pa.pa_pc; |
300 | pt = sc->sc_pa.pa_tag; |
301 | DPRINTF(("sv_defer: %p\n" , sc)); |
302 | |
303 | /* XXX |
304 | * Get a reasonable default for the I/O range. |
305 | * Assume the range around SB_PORTBASE is valid on this PCI bus. |
306 | */ |
307 | pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT); |
308 | pci_io_alloc_high = pci_io_alloc_low + 0x1000; |
309 | |
310 | if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, |
311 | sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, |
312 | 0, &sc->sc_dmaa_ioh)) { |
313 | printf("sv_attach: cannot allocate DMA A range\n" ); |
314 | return; |
315 | } |
316 | dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); |
317 | DPRINTF(("sv_attach: addr a dmaio=0x%lx\n" , (u_long)dmaio)); |
318 | pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, |
319 | dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); |
320 | |
321 | if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, |
322 | sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, |
323 | 0, &sc->sc_dmac_ioh)) { |
324 | printf("sv_attach: cannot allocate DMA C range\n" ); |
325 | return; |
326 | } |
327 | dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); |
328 | DPRINTF(("sv_attach: addr c dmaio=0x%lx\n" , (u_long)dmaio)); |
329 | pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, |
330 | dmaio | SV_DMA_CHANNEL_ENABLE); |
331 | |
332 | sc->sc_dmaset = 1; |
333 | } |
334 | |
335 | static void |
336 | sv_attach(device_t parent, device_t self, void *aux) |
337 | { |
338 | struct sv_softc *sc; |
339 | struct pci_attach_args *pa; |
340 | pci_chipset_tag_t pc; |
341 | pcitag_t pt; |
342 | pci_intr_handle_t ih; |
343 | pcireg_t csr; |
344 | char const *intrstr; |
345 | uint8_t reg; |
346 | struct audio_attach_args arg; |
347 | char intrbuf[PCI_INTRSTR_LEN]; |
348 | |
349 | sc = device_private(self); |
350 | pa = aux; |
351 | pc = pa->pa_pc; |
352 | pt = pa->pa_tag; |
353 | aprint_naive("\n" ); |
354 | aprint_normal("\n" ); |
355 | |
356 | /* Map I/O registers */ |
357 | if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, |
358 | PCI_MAPREG_TYPE_IO, 0, |
359 | &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { |
360 | aprint_error_dev(self, "can't map enhanced i/o space\n" ); |
361 | return; |
362 | } |
363 | if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, |
364 | PCI_MAPREG_TYPE_IO, 0, |
365 | &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { |
366 | aprint_error_dev(self, "can't map FM i/o space\n" ); |
367 | return; |
368 | } |
369 | if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, |
370 | PCI_MAPREG_TYPE_IO, 0, |
371 | &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { |
372 | aprint_error_dev(self, "can't map MIDI i/o space\n" ); |
373 | return; |
374 | } |
375 | DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n" , |
376 | (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); |
377 | |
378 | #if defined(alpha) |
379 | /* XXX Force allocation through the SGMAP. */ |
380 | sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); |
381 | #elif defined(amd64) || defined(i386) |
382 | /* XXX |
383 | * The SonicVibes DMA is broken and only works on 24-bit addresses. |
384 | * As long as bus_dmamem_alloc_range() is missing we use the ISA |
385 | * DMA tag on i386. |
386 | */ |
387 | sc->sc_dmatag = &isa_bus_dma_tag; |
388 | #else |
389 | sc->sc_dmatag = pa->pa_dmat; |
390 | #endif |
391 | |
392 | pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); |
393 | pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); |
394 | |
395 | /* Enable the device. */ |
396 | csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); |
397 | pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, |
398 | csr | PCI_COMMAND_MASTER_ENABLE); |
399 | |
400 | sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); |
401 | sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); |
402 | |
403 | /* initialize codec registers */ |
404 | reg = sv_read(sc, SV_CODEC_CONTROL); |
405 | reg |= SV_CTL_RESET; |
406 | sv_write(sc, SV_CODEC_CONTROL, reg); |
407 | delay(50); |
408 | |
409 | reg = sv_read(sc, SV_CODEC_CONTROL); |
410 | reg &= ~SV_CTL_RESET; |
411 | reg |= SV_CTL_INTA | SV_CTL_ENHANCED; |
412 | |
413 | /* This write clears the reset */ |
414 | sv_write(sc, SV_CODEC_CONTROL, reg); |
415 | delay(50); |
416 | |
417 | /* This write actually shoves the new values in */ |
418 | sv_write(sc, SV_CODEC_CONTROL, reg); |
419 | |
420 | DPRINTF(("sv_attach: control=0x%x\n" , sv_read(sc, SV_CODEC_CONTROL))); |
421 | |
422 | /* Map and establish the interrupt. */ |
423 | if (pci_intr_map(pa, &ih)) { |
424 | aprint_error_dev(self, "couldn't map interrupt\n" ); |
425 | return; |
426 | } |
427 | |
428 | mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); |
429 | mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); |
430 | |
431 | intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); |
432 | sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc); |
433 | if (sc->sc_ih == NULL) { |
434 | aprint_error_dev(self, "couldn't establish interrupt" ); |
435 | if (intrstr != NULL) |
436 | aprint_error(" at %s" , intrstr); |
437 | aprint_error("\n" ); |
438 | mutex_destroy(&sc->sc_lock); |
439 | mutex_destroy(&sc->sc_intr_lock); |
440 | return; |
441 | } |
442 | aprint_normal_dev(self, "interrupting at %s\n" , intrstr); |
443 | aprint_normal_dev(self, "rev %d" , |
444 | sv_read_indirect(sc, SV_REVISION_LEVEL)); |
445 | if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) |
446 | aprint_normal(", reverb SRAM present" ); |
447 | if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) |
448 | aprint_normal(", wavetable ROM present" ); |
449 | aprint_normal("\n" ); |
450 | |
451 | /* Enable DMA interrupts */ |
452 | reg = sv_read(sc, SV_CODEC_INTMASK); |
453 | reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); |
454 | reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; |
455 | sv_write(sc, SV_CODEC_INTMASK, reg); |
456 | sv_read(sc, SV_CODEC_STATUS); |
457 | |
458 | sv_init_mixer(sc); |
459 | |
460 | audio_attach_mi(&sv_hw_if, sc, self); |
461 | |
462 | arg.type = AUDIODEV_TYPE_OPL; |
463 | arg.hwif = 0; |
464 | arg.hdl = 0; |
465 | (void)config_found(self, &arg, audioprint); |
466 | |
467 | sc->sc_pa = *pa; /* for deferred setup */ |
468 | config_defer(self, sv_defer); |
469 | } |
470 | |
471 | #ifdef AUDIO_DEBUG |
472 | void |
473 | sv_dumpregs(struct sv_softc *sc) |
474 | { |
475 | int idx; |
476 | |
477 | #if 0 |
478 | for (idx = 0; idx < 0x50; idx += 4) |
479 | printf ("%02x = %x\n" , idx, |
480 | pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); |
481 | #endif |
482 | |
483 | for (idx = 0; idx < 6; idx++) |
484 | printf ("REG %02x = %02x\n" , idx, sv_read(sc, idx)); |
485 | |
486 | for (idx = 0; idx < 0x32; idx++) |
487 | printf ("IREG %02x = %02x\n" , idx, sv_read_indirect(sc, idx)); |
488 | |
489 | for (idx = 0; idx < 0x10; idx++) |
490 | printf ("DMA %02x = %02x\n" , idx, |
491 | bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); |
492 | } |
493 | #endif |
494 | |
495 | static int |
496 | sv_intr(void *p) |
497 | { |
498 | struct sv_softc *sc; |
499 | uint8_t intr; |
500 | |
501 | sc = p; |
502 | |
503 | mutex_spin_enter(&sc->sc_intr_lock); |
504 | |
505 | intr = sv_read(sc, SV_CODEC_STATUS); |
506 | DPRINTFN(5,("sv_intr: intr=0x%x\n" , intr)); |
507 | |
508 | if (intr & SV_INTSTATUS_DMAA) { |
509 | if (sc->sc_pintr) |
510 | sc->sc_pintr(sc->sc_parg); |
511 | } |
512 | |
513 | if (intr & SV_INTSTATUS_DMAC) { |
514 | if (sc->sc_rintr) |
515 | sc->sc_rintr(sc->sc_rarg); |
516 | } |
517 | |
518 | mutex_spin_exit(&sc->sc_intr_lock); |
519 | |
520 | return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0; |
521 | } |
522 | |
523 | static int |
524 | sv_allocmem(struct sv_softc *sc, size_t size, size_t align, |
525 | int direction, struct sv_dma *p) |
526 | { |
527 | int error; |
528 | |
529 | p->size = size; |
530 | error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, |
531 | p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK); |
532 | if (error) |
533 | return error; |
534 | |
535 | error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, |
536 | &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT); |
537 | if (error) |
538 | goto free; |
539 | |
540 | error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, |
541 | 0, BUS_DMA_WAITOK, &p->map); |
542 | if (error) |
543 | goto unmap; |
544 | |
545 | error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, |
546 | BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); |
547 | if (error) |
548 | goto destroy; |
549 | DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n" , |
550 | (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); |
551 | return 0; |
552 | |
553 | destroy: |
554 | bus_dmamap_destroy(sc->sc_dmatag, p->map); |
555 | unmap: |
556 | bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); |
557 | free: |
558 | bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); |
559 | return error; |
560 | } |
561 | |
562 | static int |
563 | sv_freemem(struct sv_softc *sc, struct sv_dma *p) |
564 | { |
565 | |
566 | bus_dmamap_unload(sc->sc_dmatag, p->map); |
567 | bus_dmamap_destroy(sc->sc_dmatag, p->map); |
568 | bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); |
569 | bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); |
570 | return 0; |
571 | } |
572 | |
573 | static int |
574 | sv_open(void *addr, int flags) |
575 | { |
576 | struct sv_softc *sc; |
577 | |
578 | sc = addr; |
579 | DPRINTF(("sv_open\n" )); |
580 | if (!sc->sc_dmaset) |
581 | return ENXIO; |
582 | |
583 | return 0; |
584 | } |
585 | |
586 | static int |
587 | sv_query_encoding(void *addr, struct audio_encoding *fp) |
588 | { |
589 | |
590 | switch (fp->index) { |
591 | case 0: |
592 | strcpy(fp->name, AudioEulinear); |
593 | fp->encoding = AUDIO_ENCODING_ULINEAR; |
594 | fp->precision = 8; |
595 | fp->flags = 0; |
596 | return 0; |
597 | case 1: |
598 | strcpy(fp->name, AudioEmulaw); |
599 | fp->encoding = AUDIO_ENCODING_ULAW; |
600 | fp->precision = 8; |
601 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
602 | return 0; |
603 | case 2: |
604 | strcpy(fp->name, AudioEalaw); |
605 | fp->encoding = AUDIO_ENCODING_ALAW; |
606 | fp->precision = 8; |
607 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
608 | return 0; |
609 | case 3: |
610 | strcpy(fp->name, AudioEslinear); |
611 | fp->encoding = AUDIO_ENCODING_SLINEAR; |
612 | fp->precision = 8; |
613 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
614 | return 0; |
615 | case 4: |
616 | strcpy(fp->name, AudioEslinear_le); |
617 | fp->encoding = AUDIO_ENCODING_SLINEAR_LE; |
618 | fp->precision = 16; |
619 | fp->flags = 0; |
620 | return 0; |
621 | case 5: |
622 | strcpy(fp->name, AudioEulinear_le); |
623 | fp->encoding = AUDIO_ENCODING_ULINEAR_LE; |
624 | fp->precision = 16; |
625 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
626 | return 0; |
627 | case 6: |
628 | strcpy(fp->name, AudioEslinear_be); |
629 | fp->encoding = AUDIO_ENCODING_SLINEAR_BE; |
630 | fp->precision = 16; |
631 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
632 | return 0; |
633 | case 7: |
634 | strcpy(fp->name, AudioEulinear_be); |
635 | fp->encoding = AUDIO_ENCODING_ULINEAR_BE; |
636 | fp->precision = 16; |
637 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
638 | return 0; |
639 | default: |
640 | return EINVAL; |
641 | } |
642 | } |
643 | |
644 | static int |
645 | sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play, |
646 | audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil) |
647 | { |
648 | struct sv_softc *sc; |
649 | audio_params_t *p; |
650 | uint32_t val; |
651 | |
652 | sc = addr; |
653 | p = NULL; |
654 | /* |
655 | * This device only has one clock, so make the sample rates match. |
656 | */ |
657 | if (play->sample_rate != rec->sample_rate && |
658 | usemode == (AUMODE_PLAY | AUMODE_RECORD)) { |
659 | if (setmode == AUMODE_PLAY) { |
660 | rec->sample_rate = play->sample_rate; |
661 | setmode |= AUMODE_RECORD; |
662 | } else if (setmode == AUMODE_RECORD) { |
663 | play->sample_rate = rec->sample_rate; |
664 | setmode |= AUMODE_PLAY; |
665 | } else |
666 | return EINVAL; |
667 | } |
668 | |
669 | if (setmode & AUMODE_RECORD) { |
670 | p = rec; |
671 | if (auconv_set_converter(sv_formats, SV_NFORMATS, |
672 | AUMODE_RECORD, rec, FALSE, rfil) < 0) |
673 | return EINVAL; |
674 | } |
675 | if (setmode & AUMODE_PLAY) { |
676 | p = play; |
677 | if (auconv_set_converter(sv_formats, SV_NFORMATS, |
678 | AUMODE_PLAY, play, FALSE, pfil) < 0) |
679 | return EINVAL; |
680 | } |
681 | |
682 | if (p == NULL) |
683 | return 0; |
684 | |
685 | val = p->sample_rate * 65536 / 48000; |
686 | /* |
687 | * If the sample rate is exactly 48 kHz, the fraction would overflow the |
688 | * register, so we have to bias it. This causes a little clock drift. |
689 | * The drift is below normal crystal tolerance (.0001%), so although |
690 | * this seems a little silly, we can pretty much ignore it. |
691 | * (I tested the output speed with values of 1-20, just to be sure this |
692 | * register isn't *supposed* to have a bias. It isn't.) |
693 | * - mycroft |
694 | */ |
695 | if (val > 65535) |
696 | val = 65535; |
697 | |
698 | mutex_spin_enter(&sc->sc_intr_lock); |
699 | sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); |
700 | sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); |
701 | mutex_spin_exit(&sc->sc_intr_lock); |
702 | |
703 | #define F_REF 24576000 |
704 | |
705 | #define ABS(x) (((x) < 0) ? (-x) : (x)) |
706 | |
707 | if (setmode & AUMODE_RECORD) { |
708 | /* The ADC reference frequency (f_out) is 512 * sample rate */ |
709 | |
710 | /* f_out is dervied from the 24.576MHz crystal by three values: |
711 | M & N & R. The equation is as follows: |
712 | |
713 | f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) |
714 | |
715 | with the constraint that: |
716 | |
717 | 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz |
718 | and n, m >= 1 |
719 | */ |
720 | |
721 | int goal_f_out; |
722 | int a, n, m, best_n, best_m, best_error; |
723 | int pll_sample; |
724 | int error; |
725 | |
726 | goal_f_out = 512 * rec->sample_rate; |
727 | best_n = 0; |
728 | best_m = 0; |
729 | best_error = 10000000; |
730 | for (a = 0; a < 8; a++) { |
731 | if ((goal_f_out * (1 << a)) >= 80000000) |
732 | break; |
733 | } |
734 | |
735 | /* a != 8 because sample_rate >= 2000 */ |
736 | |
737 | for (n = 33; n > 2; n--) { |
738 | m = (goal_f_out * n * (1 << a)) / F_REF; |
739 | if ((m > 257) || (m < 3)) |
740 | continue; |
741 | |
742 | pll_sample = (m * F_REF) / (n * (1 << a)); |
743 | pll_sample /= 512; |
744 | |
745 | /* Threshold might be good here */ |
746 | error = pll_sample - rec->sample_rate; |
747 | error = ABS(error); |
748 | |
749 | if (error < best_error) { |
750 | best_error = error; |
751 | best_n = n; |
752 | best_m = m; |
753 | if (error == 0) break; |
754 | } |
755 | } |
756 | |
757 | best_n -= 2; |
758 | best_m -= 2; |
759 | |
760 | mutex_spin_enter(&sc->sc_intr_lock); |
761 | sv_write_indirect(sc, SV_ADC_PLL_M, best_m); |
762 | sv_write_indirect(sc, SV_ADC_PLL_N, |
763 | best_n | (a << SV_PLL_R_SHIFT)); |
764 | mutex_spin_exit(&sc->sc_intr_lock); |
765 | } |
766 | |
767 | return 0; |
768 | } |
769 | |
770 | static int |
771 | sv_round_blocksize(void *addr, int blk, int mode, |
772 | const audio_params_t *param) |
773 | { |
774 | |
775 | return blk & -32; /* keep good alignment */ |
776 | } |
777 | |
778 | static int |
779 | sv_trigger_output(void *addr, void *start, void *end, int blksize, |
780 | void (*intr)(void *), void *arg, const audio_params_t *param) |
781 | { |
782 | struct sv_softc *sc; |
783 | struct sv_dma *p; |
784 | uint8_t mode; |
785 | int dma_count; |
786 | |
787 | DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d " |
788 | "intr=%p(%p)\n" , addr, start, end, blksize, intr, arg)); |
789 | sc = addr; |
790 | sc->sc_pintr = intr; |
791 | sc->sc_parg = arg; |
792 | |
793 | mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); |
794 | mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); |
795 | if (param->precision == 16) |
796 | mode |= SV_DMAA_FORMAT16; |
797 | if (param->channels == 2) |
798 | mode |= SV_DMAA_STEREO; |
799 | sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); |
800 | |
801 | for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) |
802 | continue; |
803 | if (p == NULL) { |
804 | printf("sv_trigger_output: bad addr %p\n" , start); |
805 | return EINVAL; |
806 | } |
807 | |
808 | dma_count = ((char *)end - (char *)start) - 1; |
809 | DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n" , |
810 | (int)DMAADDR(p), dma_count)); |
811 | |
812 | bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, |
813 | DMAADDR(p)); |
814 | bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, |
815 | dma_count); |
816 | bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, |
817 | DMA37MD_READ | DMA37MD_LOOP); |
818 | |
819 | DPRINTF(("sv_trigger_output: current addr=%x\n" , |
820 | bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); |
821 | |
822 | dma_count = blksize - 1; |
823 | |
824 | sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); |
825 | sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); |
826 | |
827 | mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); |
828 | sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); |
829 | |
830 | return 0; |
831 | } |
832 | |
833 | static int |
834 | sv_trigger_input(void *addr, void *start, void *end, int blksize, |
835 | void (*intr)(void *), void *arg, const audio_params_t *param) |
836 | { |
837 | struct sv_softc *sc; |
838 | struct sv_dma *p; |
839 | uint8_t mode; |
840 | int dma_count; |
841 | |
842 | DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d " |
843 | "intr=%p(%p)\n" , addr, start, end, blksize, intr, arg)); |
844 | sc = addr; |
845 | sc->sc_rintr = intr; |
846 | sc->sc_rarg = arg; |
847 | |
848 | mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); |
849 | mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); |
850 | if (param->precision == 16) |
851 | mode |= SV_DMAC_FORMAT16; |
852 | if (param->channels == 2) |
853 | mode |= SV_DMAC_STEREO; |
854 | sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); |
855 | |
856 | for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) |
857 | continue; |
858 | if (!p) { |
859 | printf("sv_trigger_input: bad addr %p\n" , start); |
860 | return EINVAL; |
861 | } |
862 | |
863 | dma_count = (((char *)end - (char *)start) >> 1) - 1; |
864 | DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n" , |
865 | (int)DMAADDR(p), dma_count)); |
866 | |
867 | bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, |
868 | DMAADDR(p)); |
869 | bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, |
870 | dma_count); |
871 | bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, |
872 | DMA37MD_WRITE | DMA37MD_LOOP); |
873 | |
874 | DPRINTF(("sv_trigger_input: current addr=%x\n" , |
875 | bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); |
876 | |
877 | dma_count = (blksize >> 1) - 1; |
878 | |
879 | sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); |
880 | sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); |
881 | |
882 | mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); |
883 | sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); |
884 | |
885 | return 0; |
886 | } |
887 | |
888 | static int |
889 | sv_halt_output(void *addr) |
890 | { |
891 | struct sv_softc *sc; |
892 | uint8_t mode; |
893 | |
894 | DPRINTF(("sv: sv_halt_output\n" )); |
895 | sc = addr; |
896 | mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); |
897 | sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); |
898 | sc->sc_pintr = 0; |
899 | |
900 | return 0; |
901 | } |
902 | |
903 | static int |
904 | sv_halt_input(void *addr) |
905 | { |
906 | struct sv_softc *sc; |
907 | uint8_t mode; |
908 | |
909 | DPRINTF(("sv: sv_halt_input\n" )); |
910 | sc = addr; |
911 | mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); |
912 | sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); |
913 | sc->sc_rintr = 0; |
914 | |
915 | return 0; |
916 | } |
917 | |
918 | static int |
919 | sv_getdev(void *addr, struct audio_device *retp) |
920 | { |
921 | |
922 | *retp = sv_device; |
923 | return 0; |
924 | } |
925 | |
926 | |
927 | /* |
928 | * Mixer related code is here |
929 | * |
930 | */ |
931 | |
932 | #define SV_INPUT_CLASS 0 |
933 | #define SV_OUTPUT_CLASS 1 |
934 | #define SV_RECORD_CLASS 2 |
935 | |
936 | #define SV_LAST_CLASS 2 |
937 | |
938 | static const char *mixer_classes[] = |
939 | { AudioCinputs, AudioCoutputs, AudioCrecord }; |
940 | |
941 | static const struct { |
942 | uint8_t l_port; |
943 | uint8_t r_port; |
944 | uint8_t mask; |
945 | uint8_t class; |
946 | const char *audio; |
947 | } ports[] = { |
948 | { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, |
949 | SV_INPUT_CLASS, "aux1" }, |
950 | { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, |
951 | SV_INPUT_CLASS, AudioNcd }, |
952 | { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, |
953 | SV_INPUT_CLASS, AudioNline }, |
954 | { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, |
955 | { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, |
956 | SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, |
957 | { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, |
958 | SV_INPUT_CLASS, "aux2" }, |
959 | { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, |
960 | SV_INPUT_CLASS, AudioNdac }, |
961 | { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, |
962 | SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } |
963 | }; |
964 | |
965 | |
966 | static const struct { |
967 | int idx; |
968 | const char *name; |
969 | } record_sources[] = { |
970 | { SV_REC_CD, AudioNcd }, |
971 | { SV_REC_DAC, AudioNdac }, |
972 | { SV_REC_AUX2, "aux2" }, |
973 | { SV_REC_LINE, AudioNline }, |
974 | { SV_REC_AUX1, "aux1" }, |
975 | { SV_REC_MIC, AudioNmicrophone }, |
976 | { SV_REC_MIXER, AudioNmixerout } |
977 | }; |
978 | |
979 | |
980 | #define SV_DEVICES_PER_PORT 2 |
981 | #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) |
982 | #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) |
983 | #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) |
984 | #define SV_MIC_BOOST (SV_LAST_MIXER + 2) |
985 | #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) |
986 | #define SV_SRS_MODE (SV_LAST_MIXER + 4) |
987 | |
988 | static int |
989 | sv_query_devinfo(void *addr, mixer_devinfo_t *dip) |
990 | { |
991 | int i; |
992 | |
993 | /* It's a class */ |
994 | if (dip->index <= SV_LAST_CLASS) { |
995 | dip->type = AUDIO_MIXER_CLASS; |
996 | dip->mixer_class = dip->index; |
997 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
998 | strcpy(dip->label.name, mixer_classes[dip->index]); |
999 | return 0; |
1000 | } |
1001 | |
1002 | if (dip->index >= SV_FIRST_MIXER && |
1003 | dip->index <= SV_LAST_MIXER) { |
1004 | int off, mute ,idx; |
1005 | |
1006 | off = dip->index - SV_FIRST_MIXER; |
1007 | mute = (off % SV_DEVICES_PER_PORT); |
1008 | idx = off / SV_DEVICES_PER_PORT; |
1009 | dip->mixer_class = ports[idx].class; |
1010 | strcpy(dip->label.name, ports[idx].audio); |
1011 | |
1012 | if (!mute) { |
1013 | dip->type = AUDIO_MIXER_VALUE; |
1014 | dip->prev = AUDIO_MIXER_LAST; |
1015 | dip->next = dip->index + 1; |
1016 | |
1017 | if (ports[idx].r_port != 0) |
1018 | dip->un.v.num_channels = 2; |
1019 | else |
1020 | dip->un.v.num_channels = 1; |
1021 | |
1022 | strcpy(dip->un.v.units.name, AudioNvolume); |
1023 | } else { |
1024 | dip->type = AUDIO_MIXER_ENUM; |
1025 | dip->prev = dip->index - 1; |
1026 | dip->next = AUDIO_MIXER_LAST; |
1027 | |
1028 | strcpy(dip->label.name, AudioNmute); |
1029 | dip->un.e.num_mem = 2; |
1030 | strcpy(dip->un.e.member[0].label.name, AudioNoff); |
1031 | dip->un.e.member[0].ord = 0; |
1032 | strcpy(dip->un.e.member[1].label.name, AudioNon); |
1033 | dip->un.e.member[1].ord = 1; |
1034 | } |
1035 | |
1036 | return 0; |
1037 | } |
1038 | |
1039 | switch (dip->index) { |
1040 | case SV_RECORD_SOURCE: |
1041 | dip->mixer_class = SV_RECORD_CLASS; |
1042 | dip->prev = AUDIO_MIXER_LAST; |
1043 | dip->next = SV_RECORD_GAIN; |
1044 | strcpy(dip->label.name, AudioNsource); |
1045 | dip->type = AUDIO_MIXER_ENUM; |
1046 | |
1047 | dip->un.e.num_mem = ARRAY_SIZE(record_sources); |
1048 | for (i = 0; i < ARRAY_SIZE(record_sources); i++) { |
1049 | strcpy(dip->un.e.member[i].label.name, |
1050 | record_sources[i].name); |
1051 | dip->un.e.member[i].ord = record_sources[i].idx; |
1052 | } |
1053 | return 0; |
1054 | |
1055 | case SV_RECORD_GAIN: |
1056 | dip->mixer_class = SV_RECORD_CLASS; |
1057 | dip->prev = SV_RECORD_SOURCE; |
1058 | dip->next = AUDIO_MIXER_LAST; |
1059 | strcpy(dip->label.name, "gain" ); |
1060 | dip->type = AUDIO_MIXER_VALUE; |
1061 | dip->un.v.num_channels = 1; |
1062 | strcpy(dip->un.v.units.name, AudioNvolume); |
1063 | return 0; |
1064 | |
1065 | case SV_MIC_BOOST: |
1066 | dip->mixer_class = SV_RECORD_CLASS; |
1067 | dip->prev = AUDIO_MIXER_LAST; |
1068 | dip->next = AUDIO_MIXER_LAST; |
1069 | strcpy(dip->label.name, "micboost" ); |
1070 | goto on_off; |
1071 | |
1072 | case SV_SRS_MODE: |
1073 | dip->mixer_class = SV_OUTPUT_CLASS; |
1074 | dip->prev = dip->next = AUDIO_MIXER_LAST; |
1075 | strcpy(dip->label.name, AudioNspatial); |
1076 | |
1077 | on_off: |
1078 | dip->type = AUDIO_MIXER_ENUM; |
1079 | dip->un.e.num_mem = 2; |
1080 | strcpy(dip->un.e.member[0].label.name, AudioNoff); |
1081 | dip->un.e.member[0].ord = 0; |
1082 | strcpy(dip->un.e.member[1].label.name, AudioNon); |
1083 | dip->un.e.member[1].ord = 1; |
1084 | return 0; |
1085 | } |
1086 | |
1087 | return ENXIO; |
1088 | } |
1089 | |
1090 | static int |
1091 | sv_mixer_set_port(void *addr, mixer_ctrl_t *cp) |
1092 | { |
1093 | struct sv_softc *sc; |
1094 | uint8_t reg; |
1095 | int idx; |
1096 | |
1097 | sc = addr; |
1098 | if (cp->dev >= SV_FIRST_MIXER && |
1099 | cp->dev <= SV_LAST_MIXER) { |
1100 | int off, mute; |
1101 | |
1102 | off = cp->dev - SV_FIRST_MIXER; |
1103 | mute = (off % SV_DEVICES_PER_PORT); |
1104 | idx = off / SV_DEVICES_PER_PORT; |
1105 | |
1106 | if (mute) { |
1107 | if (cp->type != AUDIO_MIXER_ENUM) |
1108 | return EINVAL; |
1109 | |
1110 | mutex_spin_enter(&sc->sc_intr_lock); |
1111 | reg = sv_read_indirect(sc, ports[idx].l_port); |
1112 | if (cp->un.ord) |
1113 | reg |= SV_MUTE_BIT; |
1114 | else |
1115 | reg &= ~SV_MUTE_BIT; |
1116 | sv_write_indirect(sc, ports[idx].l_port, reg); |
1117 | |
1118 | if (ports[idx].r_port) { |
1119 | reg = sv_read_indirect(sc, ports[idx].r_port); |
1120 | if (cp->un.ord) |
1121 | reg |= SV_MUTE_BIT; |
1122 | else |
1123 | reg &= ~SV_MUTE_BIT; |
1124 | sv_write_indirect(sc, ports[idx].r_port, reg); |
1125 | } |
1126 | mutex_spin_exit(&sc->sc_intr_lock); |
1127 | } else { |
1128 | int lval, rval; |
1129 | |
1130 | if (cp->type != AUDIO_MIXER_VALUE) |
1131 | return EINVAL; |
1132 | |
1133 | if (cp->un.value.num_channels != 1 && |
1134 | cp->un.value.num_channels != 2) |
1135 | return (EINVAL); |
1136 | |
1137 | if (ports[idx].r_port == 0) { |
1138 | if (cp->un.value.num_channels != 1) |
1139 | return (EINVAL); |
1140 | lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; |
1141 | rval = 0; /* shut up GCC */ |
1142 | } else { |
1143 | if (cp->un.value.num_channels != 2) |
1144 | return (EINVAL); |
1145 | |
1146 | lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; |
1147 | rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; |
1148 | } |
1149 | |
1150 | mutex_spin_enter(&sc->sc_intr_lock); |
1151 | reg = sv_read_indirect(sc, ports[idx].l_port); |
1152 | reg &= ~(ports[idx].mask); |
1153 | lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / |
1154 | AUDIO_MAX_GAIN; |
1155 | reg |= lval; |
1156 | sv_write_indirect(sc, ports[idx].l_port, reg); |
1157 | |
1158 | if (ports[idx].r_port != 0) { |
1159 | reg = sv_read_indirect(sc, ports[idx].r_port); |
1160 | reg &= ~(ports[idx].mask); |
1161 | |
1162 | rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / |
1163 | AUDIO_MAX_GAIN; |
1164 | reg |= rval; |
1165 | |
1166 | sv_write_indirect(sc, ports[idx].r_port, reg); |
1167 | } |
1168 | |
1169 | sv_read_indirect(sc, ports[idx].l_port); |
1170 | mutex_spin_exit(&sc->sc_intr_lock); |
1171 | } |
1172 | |
1173 | return 0; |
1174 | } |
1175 | |
1176 | |
1177 | switch (cp->dev) { |
1178 | case SV_RECORD_SOURCE: |
1179 | if (cp->type != AUDIO_MIXER_ENUM) |
1180 | return EINVAL; |
1181 | |
1182 | for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { |
1183 | if (record_sources[idx].idx == cp->un.ord) |
1184 | goto found; |
1185 | } |
1186 | |
1187 | return EINVAL; |
1188 | |
1189 | found: |
1190 | mutex_spin_enter(&sc->sc_intr_lock); |
1191 | reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); |
1192 | reg &= ~SV_REC_SOURCE_MASK; |
1193 | reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); |
1194 | sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); |
1195 | |
1196 | reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); |
1197 | reg &= ~SV_REC_SOURCE_MASK; |
1198 | reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); |
1199 | sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); |
1200 | mutex_spin_exit(&sc->sc_intr_lock); |
1201 | return 0; |
1202 | |
1203 | case SV_RECORD_GAIN: |
1204 | { |
1205 | int val; |
1206 | |
1207 | if (cp->type != AUDIO_MIXER_VALUE) |
1208 | return EINVAL; |
1209 | |
1210 | if (cp->un.value.num_channels != 1) |
1211 | return EINVAL; |
1212 | |
1213 | val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] |
1214 | * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN; |
1215 | |
1216 | mutex_spin_enter(&sc->sc_intr_lock); |
1217 | reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); |
1218 | reg &= ~SV_REC_GAIN_MASK; |
1219 | reg |= val; |
1220 | sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); |
1221 | |
1222 | reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); |
1223 | reg &= ~SV_REC_GAIN_MASK; |
1224 | reg |= val; |
1225 | sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); |
1226 | mutex_spin_exit(&sc->sc_intr_lock); |
1227 | } |
1228 | return (0); |
1229 | |
1230 | case SV_MIC_BOOST: |
1231 | if (cp->type != AUDIO_MIXER_ENUM) |
1232 | return EINVAL; |
1233 | |
1234 | mutex_spin_enter(&sc->sc_intr_lock); |
1235 | reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); |
1236 | if (cp->un.ord) { |
1237 | reg |= SV_MIC_BOOST_BIT; |
1238 | } else { |
1239 | reg &= ~SV_MIC_BOOST_BIT; |
1240 | } |
1241 | |
1242 | sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); |
1243 | mutex_spin_exit(&sc->sc_intr_lock); |
1244 | return 0; |
1245 | |
1246 | case SV_SRS_MODE: |
1247 | if (cp->type != AUDIO_MIXER_ENUM) |
1248 | return EINVAL; |
1249 | |
1250 | mutex_spin_enter(&sc->sc_intr_lock); |
1251 | reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); |
1252 | if (cp->un.ord) { |
1253 | reg &= ~SV_SRS_SPACE_ONOFF; |
1254 | } else { |
1255 | reg |= SV_SRS_SPACE_ONOFF; |
1256 | } |
1257 | |
1258 | sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); |
1259 | mutex_spin_exit(&sc->sc_intr_lock); |
1260 | return 0; |
1261 | } |
1262 | |
1263 | return EINVAL; |
1264 | } |
1265 | |
1266 | static int |
1267 | sv_mixer_get_port(void *addr, mixer_ctrl_t *cp) |
1268 | { |
1269 | struct sv_softc *sc; |
1270 | int val, error; |
1271 | uint8_t reg; |
1272 | |
1273 | sc = addr; |
1274 | error = 0; |
1275 | |
1276 | mutex_spin_enter(&sc->sc_intr_lock); |
1277 | |
1278 | if (cp->dev >= SV_FIRST_MIXER && |
1279 | cp->dev <= SV_LAST_MIXER) { |
1280 | int off = cp->dev - SV_FIRST_MIXER; |
1281 | int mute = (off % 2); |
1282 | int idx = off / 2; |
1283 | |
1284 | off = cp->dev - SV_FIRST_MIXER; |
1285 | mute = (off % 2); |
1286 | idx = off / 2; |
1287 | if (mute) { |
1288 | if (cp->type != AUDIO_MIXER_ENUM) |
1289 | error = EINVAL; |
1290 | else { |
1291 | reg = sv_read_indirect(sc, ports[idx].l_port); |
1292 | cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); |
1293 | } |
1294 | } else { |
1295 | if (cp->type != AUDIO_MIXER_VALUE || |
1296 | (cp->un.value.num_channels != 1 && |
1297 | cp->un.value.num_channels != 2) || |
1298 | ((ports[idx].r_port == 0 && |
1299 | cp->un.value.num_channels != 1) || |
1300 | (ports[idx].r_port != 0 && |
1301 | cp->un.value.num_channels != 2))) |
1302 | error = EINVAL; |
1303 | else { |
1304 | reg = sv_read_indirect(sc, ports[idx].l_port); |
1305 | reg &= ports[idx].mask; |
1306 | |
1307 | val = AUDIO_MAX_GAIN - |
1308 | ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); |
1309 | |
1310 | if (ports[idx].r_port != 0) { |
1311 | cp->un.value.level |
1312 | [AUDIO_MIXER_LEVEL_LEFT] = val; |
1313 | |
1314 | reg = sv_read_indirect(sc, |
1315 | ports[idx].r_port); |
1316 | reg &= ports[idx].mask; |
1317 | |
1318 | val = AUDIO_MAX_GAIN - |
1319 | ((reg * AUDIO_MAX_GAIN) |
1320 | / ports[idx].mask); |
1321 | cp->un.value.level |
1322 | [AUDIO_MIXER_LEVEL_RIGHT] = val; |
1323 | } else |
1324 | cp->un.value.level |
1325 | [AUDIO_MIXER_LEVEL_MONO] = val; |
1326 | } |
1327 | } |
1328 | |
1329 | return error; |
1330 | } |
1331 | |
1332 | switch (cp->dev) { |
1333 | case SV_RECORD_SOURCE: |
1334 | if (cp->type != AUDIO_MIXER_ENUM) { |
1335 | error = EINVAL; |
1336 | break; |
1337 | } |
1338 | |
1339 | reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); |
1340 | cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); |
1341 | |
1342 | break; |
1343 | |
1344 | case SV_RECORD_GAIN: |
1345 | if (cp->type != AUDIO_MIXER_VALUE) { |
1346 | error = EINVAL; |
1347 | break; |
1348 | } |
1349 | if (cp->un.value.num_channels != 1) { |
1350 | error = EINVAL; |
1351 | break; |
1352 | } |
1353 | |
1354 | reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; |
1355 | cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = |
1356 | (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; |
1357 | |
1358 | break; |
1359 | |
1360 | case SV_MIC_BOOST: |
1361 | if (cp->type != AUDIO_MIXER_ENUM) { |
1362 | error = EINVAL; |
1363 | break; |
1364 | } |
1365 | reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); |
1366 | cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); |
1367 | break; |
1368 | |
1369 | case SV_SRS_MODE: |
1370 | if (cp->type != AUDIO_MIXER_ENUM) { |
1371 | error = EINVAL; |
1372 | break; |
1373 | } |
1374 | reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); |
1375 | cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); |
1376 | break; |
1377 | default: |
1378 | error = EINVAL; |
1379 | break; |
1380 | } |
1381 | |
1382 | mutex_spin_exit(&sc->sc_intr_lock); |
1383 | return error; |
1384 | } |
1385 | |
1386 | static void |
1387 | sv_init_mixer(struct sv_softc *sc) |
1388 | { |
1389 | mixer_ctrl_t cp; |
1390 | int i; |
1391 | |
1392 | cp.type = AUDIO_MIXER_ENUM; |
1393 | cp.dev = SV_SRS_MODE; |
1394 | cp.un.ord = 0; |
1395 | |
1396 | sv_mixer_set_port(sc, &cp); |
1397 | |
1398 | for (i = 0; i < ARRAY_SIZE(ports); i++) { |
1399 | if (!strcmp(ports[i].audio, AudioNdac)) { |
1400 | cp.type = AUDIO_MIXER_ENUM; |
1401 | cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; |
1402 | cp.un.ord = 0; |
1403 | sv_mixer_set_port(sc, &cp); |
1404 | break; |
1405 | } |
1406 | } |
1407 | } |
1408 | |
1409 | static void * |
1410 | sv_malloc(void *addr, int direction, size_t size) |
1411 | { |
1412 | struct sv_softc *sc; |
1413 | struct sv_dma *p; |
1414 | int error; |
1415 | |
1416 | sc = addr; |
1417 | p = kmem_alloc(sizeof(*p), KM_SLEEP); |
1418 | if (p == NULL) |
1419 | return NULL; |
1420 | error = sv_allocmem(sc, size, 16, direction, p); |
1421 | if (error) { |
1422 | kmem_free(p, sizeof(*p)); |
1423 | return 0; |
1424 | } |
1425 | p->next = sc->sc_dmas; |
1426 | sc->sc_dmas = p; |
1427 | return KERNADDR(p); |
1428 | } |
1429 | |
1430 | static void |
1431 | sv_free(void *addr, void *ptr, size_t size) |
1432 | { |
1433 | struct sv_softc *sc; |
1434 | struct sv_dma **pp, *p; |
1435 | |
1436 | sc = addr; |
1437 | for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { |
1438 | if (KERNADDR(p) == ptr) { |
1439 | sv_freemem(sc, p); |
1440 | *pp = p->next; |
1441 | kmem_free(p, sizeof(*p)); |
1442 | return; |
1443 | } |
1444 | } |
1445 | } |
1446 | |
1447 | static size_t |
1448 | sv_round_buffersize(void *addr, int direction, size_t size) |
1449 | { |
1450 | |
1451 | return size; |
1452 | } |
1453 | |
1454 | static paddr_t |
1455 | sv_mappage(void *addr, void *mem, off_t off, int prot) |
1456 | { |
1457 | struct sv_softc *sc; |
1458 | struct sv_dma *p; |
1459 | |
1460 | sc = addr; |
1461 | if (off < 0) |
1462 | return -1; |
1463 | for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) |
1464 | continue; |
1465 | if (p == NULL) |
1466 | return -1; |
1467 | return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, |
1468 | off, prot, BUS_DMA_WAITOK); |
1469 | } |
1470 | |
1471 | static int |
1472 | sv_get_props(void *addr) |
1473 | { |
1474 | return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX; |
1475 | } |
1476 | |
1477 | static void |
1478 | sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) |
1479 | { |
1480 | struct sv_softc *sc; |
1481 | |
1482 | sc = addr; |
1483 | *intr = &sc->sc_intr_lock; |
1484 | *thread = &sc->sc_lock; |
1485 | } |
1486 | |