1 | /* |
2 | * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting |
3 | * Copyright (c) 2002-2008 Atheros Communications, Inc. |
4 | * |
5 | * Permission to use, copy, modify, and/or distribute this software for any |
6 | * purpose with or without fee is hereby granted, provided that the above |
7 | * copyright notice and this permission notice appear in all copies. |
8 | * |
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
16 | * |
17 | * $Id: ar5413.c,v 1.4 2013/09/12 12:07:01 martin Exp $ |
18 | */ |
19 | #include "opt_ah.h" |
20 | |
21 | #include "ah.h" |
22 | #include "ah_internal.h" |
23 | |
24 | #include "ah_eeprom_v3.h" |
25 | |
26 | #include "ar5212/ar5212.h" |
27 | #include "ar5212/ar5212reg.h" |
28 | #include "ar5212/ar5212phy.h" |
29 | |
30 | #define AH_5212_5413 |
31 | #include "ar5212/ar5212.ini" |
32 | |
33 | #define N(a) (sizeof(a)/sizeof(a[0])) |
34 | |
35 | struct ar5413State { |
36 | RF_HAL_FUNCS base; /* public state, must be first */ |
37 | uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; |
38 | |
39 | uint32_t Bank1Data[N(ar5212Bank1_5413)]; |
40 | uint32_t Bank2Data[N(ar5212Bank2_5413)]; |
41 | uint32_t Bank3Data[N(ar5212Bank3_5413)]; |
42 | uint32_t Bank6Data[N(ar5212Bank6_5413)]; |
43 | uint32_t Bank7Data[N(ar5212Bank7_5413)]; |
44 | |
45 | /* |
46 | * Private state for reduced stack usage. |
47 | */ |
48 | /* filled out Vpd table for all pdGains (chanL) */ |
49 | uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] |
50 | [MAX_PWR_RANGE_IN_HALF_DB]; |
51 | /* filled out Vpd table for all pdGains (chanR) */ |
52 | uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] |
53 | [MAX_PWR_RANGE_IN_HALF_DB]; |
54 | /* filled out Vpd table for all pdGains (interpolated) */ |
55 | uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] |
56 | [MAX_PWR_RANGE_IN_HALF_DB]; |
57 | }; |
58 | #define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal) |
59 | |
60 | extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, |
61 | uint32_t numBits, uint32_t firstBit, uint32_t column); |
62 | |
63 | static void |
64 | ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, |
65 | int writes) |
66 | { |
67 | HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes); |
68 | HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes); |
69 | HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes); |
70 | } |
71 | |
72 | /* |
73 | * Take the MHz channel value and set the Channel value |
74 | * |
75 | * ASSUMES: Writes enabled to analog bus |
76 | */ |
77 | static HAL_BOOL |
78 | ar5413SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) |
79 | { |
80 | uint32_t channelSel = 0; |
81 | uint32_t bModeSynth = 0; |
82 | uint32_t aModeRefSel = 0; |
83 | uint32_t reg32 = 0; |
84 | uint16_t freq; |
85 | |
86 | OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); |
87 | |
88 | if (chan->channel < 4800) { |
89 | uint32_t txctl; |
90 | |
91 | if (((chan->channel - 2192) % 5) == 0) { |
92 | channelSel = ((chan->channel - 672) * 2 - 3040)/10; |
93 | bModeSynth = 0; |
94 | } else if (((chan->channel - 2224) % 5) == 0) { |
95 | channelSel = ((chan->channel - 704) * 2 - 3040) / 10; |
96 | bModeSynth = 1; |
97 | } else { |
98 | HALDEBUG(ah, HAL_DEBUG_ANY, |
99 | "%s: invalid channel %u MHz\n" , |
100 | __func__, chan->channel); |
101 | return AH_FALSE; |
102 | } |
103 | |
104 | channelSel = (channelSel << 2) & 0xff; |
105 | channelSel = ath_hal_reverseBits(channelSel, 8); |
106 | |
107 | txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); |
108 | if (chan->channel == 2484) { |
109 | /* Enable channel spreading for channel 14 */ |
110 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
111 | txctl | AR_PHY_CCK_TX_CTRL_JAPAN); |
112 | } else { |
113 | OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
114 | txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); |
115 | } |
116 | } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) { |
117 | freq = chan->channel - 2; /* Align to even 5MHz raster */ |
118 | channelSel = ath_hal_reverseBits( |
119 | (uint32_t)(((freq - 4800)*10)/25 + 1), 8); |
120 | aModeRefSel = ath_hal_reverseBits(0, 2); |
121 | } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) { |
122 | channelSel = ath_hal_reverseBits( |
123 | ((chan->channel - 4800) / 20 << 2), 8); |
124 | aModeRefSel = ath_hal_reverseBits(1, 2); |
125 | } else if ((chan->channel % 10) == 0) { |
126 | channelSel = ath_hal_reverseBits( |
127 | ((chan->channel - 4800) / 10 << 1), 8); |
128 | aModeRefSel = ath_hal_reverseBits(1, 2); |
129 | } else if ((chan->channel % 5) == 0) { |
130 | channelSel = ath_hal_reverseBits( |
131 | (chan->channel - 4800) / 5, 8); |
132 | aModeRefSel = ath_hal_reverseBits(1, 2); |
133 | } else { |
134 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n" , |
135 | __func__, chan->channel); |
136 | return AH_FALSE; |
137 | } |
138 | |
139 | reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | |
140 | (1 << 12) | 0x1; |
141 | OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); |
142 | |
143 | reg32 >>= 8; |
144 | OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); |
145 | |
146 | AH_PRIVATE(ah)->ah_curchan = chan; |
147 | return AH_TRUE; |
148 | } |
149 | |
150 | /* |
151 | * Reads EEPROM header info from device structure and programs |
152 | * all rf registers |
153 | * |
154 | * REQUIRES: Access to the analog rf device |
155 | */ |
156 | static HAL_BOOL |
157 | ar5413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain) |
158 | { |
159 | #define RF_BANK_SETUP(_priv, _ix, _col) do { \ |
160 | int i; \ |
161 | for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \ |
162 | (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\ |
163 | } while (0) |
164 | struct ath_hal_5212 *ahp = AH5212(ah); |
165 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
166 | uint16_t ob5GHz = 0, db5GHz = 0; |
167 | uint16_t ob2GHz = 0, db2GHz = 0; |
168 | struct ar5413State *priv = AR5413(ah); |
169 | int regWrites = 0; |
170 | |
171 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, |
172 | "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n" , |
173 | __func__, chan->channel, chan->channelFlags, modesIndex); |
174 | |
175 | HALASSERT(priv != AH_NULL); |
176 | |
177 | /* Setup rf parameters */ |
178 | switch (chan->channelFlags & CHANNEL_ALL) { |
179 | case CHANNEL_A: |
180 | case CHANNEL_T: |
181 | if (chan->channel > 4000 && chan->channel < 5260) { |
182 | ob5GHz = ee->ee_ob1; |
183 | db5GHz = ee->ee_db1; |
184 | } else if (chan->channel >= 5260 && chan->channel < 5500) { |
185 | ob5GHz = ee->ee_ob2; |
186 | db5GHz = ee->ee_db2; |
187 | } else if (chan->channel >= 5500 && chan->channel < 5725) { |
188 | ob5GHz = ee->ee_ob3; |
189 | db5GHz = ee->ee_db3; |
190 | } else if (chan->channel >= 5725) { |
191 | ob5GHz = ee->ee_ob4; |
192 | db5GHz = ee->ee_db4; |
193 | } else { |
194 | /* XXX else */ |
195 | } |
196 | break; |
197 | case CHANNEL_B: |
198 | ob2GHz = ee->ee_obFor24; |
199 | db2GHz = ee->ee_dbFor24; |
200 | break; |
201 | case CHANNEL_G: |
202 | case CHANNEL_108G: |
203 | ob2GHz = ee->ee_obFor24g; |
204 | db2GHz = ee->ee_dbFor24g; |
205 | break; |
206 | default: |
207 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n" , |
208 | __func__, chan->channelFlags); |
209 | return AH_FALSE; |
210 | } |
211 | |
212 | /* Bank 1 Write */ |
213 | RF_BANK_SETUP(priv, 1, 1); |
214 | |
215 | /* Bank 2 Write */ |
216 | RF_BANK_SETUP(priv, 2, modesIndex); |
217 | |
218 | /* Bank 3 Write */ |
219 | RF_BANK_SETUP(priv, 3, modesIndex); |
220 | |
221 | /* Bank 6 Write */ |
222 | RF_BANK_SETUP(priv, 6, modesIndex); |
223 | |
224 | /* Only the 5 or 2 GHz OB/DB need to be set for a mode */ |
225 | if (IS_CHAN_2GHZ(chan)) { |
226 | ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0); |
227 | ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0); |
228 | |
229 | /* TODO - only for Eagle 1.0 2GHz - remove for production */ |
230 | /* XXX: but without this bit G doesn't work. */ |
231 | ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2); |
232 | |
233 | /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */ |
234 | if (AH_PRIVATE(ah)->ah_ispcie) { |
235 | ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3), |
236 | 3, 131, 3); |
237 | } |
238 | } else { |
239 | ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0); |
240 | ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0); |
241 | |
242 | } |
243 | |
244 | /* Bank 7 Setup */ |
245 | RF_BANK_SETUP(priv, 7, modesIndex); |
246 | |
247 | /* Write Analog registers */ |
248 | HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites); |
249 | HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites); |
250 | HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites); |
251 | HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites); |
252 | HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites); |
253 | |
254 | /* Now that we have reprogrammed rfgain value, clear the flag. */ |
255 | ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; |
256 | |
257 | return AH_TRUE; |
258 | #undef RF_BANK_SETUP |
259 | } |
260 | |
261 | /* |
262 | * Return a reference to the requested RF Bank. |
263 | */ |
264 | static uint32_t * |
265 | ar5413GetRfBank(struct ath_hal *ah, int bank) |
266 | { |
267 | struct ar5413State *priv = AR5413(ah); |
268 | |
269 | HALASSERT(priv != AH_NULL); |
270 | switch (bank) { |
271 | case 1: return priv->Bank1Data; |
272 | case 2: return priv->Bank2Data; |
273 | case 3: return priv->Bank3Data; |
274 | case 6: return priv->Bank6Data; |
275 | case 7: return priv->Bank7Data; |
276 | } |
277 | HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n" , |
278 | __func__, bank); |
279 | return AH_NULL; |
280 | } |
281 | |
282 | /* |
283 | * Return indices surrounding the value in sorted integer lists. |
284 | * |
285 | * NB: the input list is assumed to be sorted in ascending order |
286 | */ |
287 | static void |
288 | GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, |
289 | uint32_t *vlo, uint32_t *vhi) |
290 | { |
291 | int16_t target = v; |
292 | const uint16_t *ep = lp+listSize; |
293 | const uint16_t *tp; |
294 | |
295 | /* |
296 | * Check first and last elements for out-of-bounds conditions. |
297 | */ |
298 | if (target < lp[0]) { |
299 | *vlo = *vhi = 0; |
300 | return; |
301 | } |
302 | if (target >= ep[-1]) { |
303 | *vlo = *vhi = listSize - 1; |
304 | return; |
305 | } |
306 | |
307 | /* look for value being near or between 2 values in list */ |
308 | for (tp = lp; tp < ep; tp++) { |
309 | /* |
310 | * If value is close to the current value of the list |
311 | * then target is not between values, it is one of the values |
312 | */ |
313 | if (*tp == target) { |
314 | *vlo = *vhi = tp - (const uint16_t *) lp; |
315 | return; |
316 | } |
317 | /* |
318 | * Look for value being between current value and next value |
319 | * if so return these 2 values |
320 | */ |
321 | if (target < tp[1]) { |
322 | *vlo = tp - (const uint16_t *) lp; |
323 | *vhi = *vlo + 1; |
324 | return; |
325 | } |
326 | } |
327 | } |
328 | |
329 | /* |
330 | * Fill the Vpdlist for indices Pmax-Pmin |
331 | */ |
332 | static HAL_BOOL |
333 | ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, |
334 | const int16_t *pwrList, const uint16_t *VpdList, |
335 | uint16_t numIntercepts, |
336 | uint16_t retVpdList[][64]) |
337 | { |
338 | uint16_t ii, kk; |
339 | int16_t currPwr = (int16_t)(2*Pmin); |
340 | /* since Pmin is pwr*2 and pwrList is 4*pwr */ |
341 | uint32_t idxL = 0, idxR = 0; |
342 | |
343 | ii = 0; |
344 | |
345 | if (numIntercepts < 2) |
346 | return AH_FALSE; |
347 | |
348 | while (ii <= (uint16_t)(Pmax - Pmin)) { |
349 | GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, |
350 | numIntercepts, &(idxL), &(idxR)); |
351 | if (idxR < 1) |
352 | idxR = 1; /* extrapolate below */ |
353 | if (idxL == (uint32_t)(numIntercepts - 1)) |
354 | idxL = numIntercepts - 2; /* extrapolate above */ |
355 | if (pwrList[idxL] == pwrList[idxR]) |
356 | kk = VpdList[idxL]; |
357 | else |
358 | kk = (uint16_t) |
359 | (((currPwr - pwrList[idxL])*VpdList[idxR]+ |
360 | (pwrList[idxR] - currPwr)*VpdList[idxL])/ |
361 | (pwrList[idxR] - pwrList[idxL])); |
362 | retVpdList[pdGainIdx][ii] = kk; |
363 | ii++; |
364 | currPwr += 2; /* half dB steps */ |
365 | } |
366 | |
367 | return AH_TRUE; |
368 | } |
369 | |
370 | /* |
371 | * Returns interpolated or the scaled up interpolated value |
372 | */ |
373 | static int16_t |
374 | interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, |
375 | int16_t targetLeft, int16_t targetRight) |
376 | { |
377 | int16_t rv; |
378 | |
379 | if (srcRight != srcLeft) { |
380 | rv = ((target - srcLeft)*targetRight + |
381 | (srcRight - target)*targetLeft) / (srcRight - srcLeft); |
382 | } else { |
383 | rv = targetLeft; |
384 | } |
385 | return rv; |
386 | } |
387 | |
388 | /* |
389 | * Uses the data points read from EEPROM to reconstruct the pdadc power table |
390 | * Called by ar5413SetPowerTable() |
391 | */ |
392 | static int |
393 | ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, |
394 | const RAW_DATA_STRUCT_2413 *pRawDataset, |
395 | uint16_t pdGainOverlap_t2, |
396 | int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], |
397 | uint16_t pPdGainValues[], uint16_t pPDADCValues[]) |
398 | { |
399 | struct ar5413State *priv = AR5413(ah); |
400 | #define VpdTable_L priv->vpdTable_L |
401 | #define VpdTable_R priv->vpdTable_R |
402 | #define VpdTable_I priv->vpdTable_I |
403 | uint32_t ii, jj, kk; |
404 | int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ |
405 | uint32_t idxL = 0, idxR = 0; |
406 | uint32_t numPdGainsUsed = 0; |
407 | /* |
408 | * If desired to support -ve power levels in future, just |
409 | * change pwr_I_0 to signed 5-bits. |
410 | */ |
411 | int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
412 | /* to accomodate -ve power levels later on. */ |
413 | int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; |
414 | /* to accomodate -ve power levels later on */ |
415 | uint16_t numVpd = 0; |
416 | uint16_t Vpd_step; |
417 | int16_t tmpVal ; |
418 | uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; |
419 | |
420 | /* Get upper lower index */ |
421 | GetLowerUpperIndex(channel, pRawDataset->pChannels, |
422 | pRawDataset->numChannels, &(idxL), &(idxR)); |
423 | |
424 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
425 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
426 | /* work backwards 'cause highest pdGain for lowest power */ |
427 | numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; |
428 | if (numVpd > 0) { |
429 | pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; |
430 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; |
431 | if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { |
432 | Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; |
433 | } |
434 | Pmin_t2[numPdGainsUsed] = (int16_t) |
435 | (Pmin_t2[numPdGainsUsed] / 2); |
436 | Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
437 | if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) |
438 | Pmax_t2[numPdGainsUsed] = |
439 | pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; |
440 | Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); |
441 | ar5413FillVpdTable( |
442 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
443 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), |
444 | &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L |
445 | ); |
446 | ar5413FillVpdTable( |
447 | numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], |
448 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), |
449 | &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R |
450 | ); |
451 | for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { |
452 | VpdTable_I[numPdGainsUsed][kk] = |
453 | interpolate_signed( |
454 | channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], |
455 | (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); |
456 | } |
457 | /* fill VpdTable_I for this pdGain */ |
458 | numPdGainsUsed++; |
459 | } |
460 | /* if this pdGain is used */ |
461 | } |
462 | |
463 | *pMinCalPower = Pmin_t2[0]; |
464 | kk = 0; /* index for the final table */ |
465 | for (ii = 0; ii < numPdGainsUsed; ii++) { |
466 | if (ii == (numPdGainsUsed - 1)) |
467 | pPdGainBoundaries[ii] = Pmax_t2[ii] + |
468 | PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; |
469 | else |
470 | pPdGainBoundaries[ii] = (uint16_t) |
471 | ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); |
472 | if (pPdGainBoundaries[ii] > 63) { |
473 | HALDEBUG(ah, HAL_DEBUG_ANY, |
474 | "%s: clamp pPdGainBoundaries[%d] %d\n" , |
475 | __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ |
476 | pPdGainBoundaries[ii] = 63; |
477 | } |
478 | |
479 | /* Find starting index for this pdGain */ |
480 | if (ii == 0) |
481 | ss = 0; /* for the first pdGain, start from index 0 */ |
482 | else |
483 | ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - |
484 | pdGainOverlap_t2; |
485 | Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); |
486 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
487 | /* |
488 | *-ve ss indicates need to extrapolate data below for this pdGain |
489 | */ |
490 | while (ss < 0) { |
491 | tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); |
492 | pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); |
493 | ss++; |
494 | } |
495 | |
496 | sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; |
497 | tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; |
498 | maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; |
499 | |
500 | while (ss < (int16_t)maxIndex) |
501 | pPDADCValues[kk++] = VpdTable_I[ii][ss++]; |
502 | |
503 | Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - |
504 | VpdTable_I[ii][sizeCurrVpdTable-2]); |
505 | Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); |
506 | /* |
507 | * for last gain, pdGainBoundary == Pmax_t2, so will |
508 | * have to extrapolate |
509 | */ |
510 | if (tgtIndex > maxIndex) { /* need to extrapolate above */ |
511 | while(ss < (int16_t)tgtIndex) { |
512 | tmpVal = (uint16_t) |
513 | (VpdTable_I[ii][sizeCurrVpdTable-1] + |
514 | (ss-maxIndex)*Vpd_step); |
515 | pPDADCValues[kk++] = (tmpVal > 127) ? |
516 | 127 : tmpVal; |
517 | ss++; |
518 | } |
519 | } /* extrapolated above */ |
520 | } /* for all pdGainUsed */ |
521 | |
522 | while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { |
523 | pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; |
524 | ii++; |
525 | } |
526 | while (kk < 128) { |
527 | pPDADCValues[kk] = pPDADCValues[kk-1]; |
528 | kk++; |
529 | } |
530 | |
531 | return numPdGainsUsed; |
532 | #undef VpdTable_L |
533 | #undef VpdTable_R |
534 | #undef VpdTable_I |
535 | } |
536 | |
537 | static HAL_BOOL |
538 | ar5413SetPowerTable(struct ath_hal *ah, |
539 | int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, |
540 | uint16_t *rfXpdGain) |
541 | { |
542 | struct ath_hal_5212 *ahp = AH5212(ah); |
543 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
544 | const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; |
545 | uint16_t pdGainOverlap_t2; |
546 | int16_t minCalPower5413_t2; |
547 | uint16_t *pdadcValues = ahp->ah_pcdacTable; |
548 | uint16_t gainBoundaries[4]; |
549 | uint32_t reg32, regoffset; |
550 | int i, numPdGainsUsed; |
551 | #ifndef AH_USE_INIPDGAIN |
552 | uint32_t tpcrg1; |
553 | #endif |
554 | |
555 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n" , |
556 | __func__, chan->channel,chan->channelFlags); |
557 | |
558 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
559 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
560 | else if (IS_CHAN_B(chan)) |
561 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
562 | else { |
563 | HALASSERT(IS_CHAN_5GHZ(chan)); |
564 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11A]; |
565 | } |
566 | |
567 | pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), |
568 | AR_PHY_TPCRG5_PD_GAIN_OVERLAP); |
569 | |
570 | numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah, |
571 | chan->channel, pRawDataset, pdGainOverlap_t2, |
572 | &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues); |
573 | HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); |
574 | |
575 | #ifdef AH_USE_INIPDGAIN |
576 | /* |
577 | * Use pd_gains curve from eeprom; Atheros always uses |
578 | * the default curve from the ini file but some vendors |
579 | * (e.g. Zcomax) want to override this curve and not |
580 | * honoring their settings results in tx power 5dBm low. |
581 | */ |
582 | OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
583 | (pRawDataset->pDataPerChannel[0].numPdGains - 1)); |
584 | #else |
585 | tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); |
586 | tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) |
587 | | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); |
588 | switch (numPdGainsUsed) { |
589 | case 3: |
590 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; |
591 | tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); |
592 | /* fall thru... */ |
593 | case 2: |
594 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; |
595 | tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); |
596 | /* fall thru... */ |
597 | case 1: |
598 | tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; |
599 | tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); |
600 | break; |
601 | } |
602 | #ifdef AH_DEBUG |
603 | if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) |
604 | HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " |
605 | "pd_gains (default 0x%x, calculated 0x%x)\n" , |
606 | __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); |
607 | #endif |
608 | OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); |
609 | #endif |
610 | |
611 | /* |
612 | * Note the pdadc table may not start at 0 dBm power, could be |
613 | * negative or greater than 0. Need to offset the power |
614 | * values by the amount of minPower for griffin |
615 | */ |
616 | if (minCalPower5413_t2 != 0) |
617 | ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2); |
618 | else |
619 | ahp->ah_txPowerIndexOffset = 0; |
620 | |
621 | /* Finally, write the power values into the baseband power table */ |
622 | regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ |
623 | for (i = 0; i < 32; i++) { |
624 | reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | |
625 | ((pdadcValues[4*i + 1] & 0xFF) << 8) | |
626 | ((pdadcValues[4*i + 2] & 0xFF) << 16) | |
627 | ((pdadcValues[4*i + 3] & 0xFF) << 24) ; |
628 | OS_REG_WRITE(ah, regoffset, reg32); |
629 | regoffset += 4; |
630 | } |
631 | |
632 | OS_REG_WRITE(ah, AR_PHY_TPCRG5, |
633 | SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
634 | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | |
635 | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | |
636 | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | |
637 | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); |
638 | |
639 | return AH_TRUE; |
640 | } |
641 | |
642 | static int16_t |
643 | ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) |
644 | { |
645 | uint32_t ii,jj; |
646 | uint16_t Pmin=0,numVpd; |
647 | |
648 | for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
649 | jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; |
650 | /* work backwards 'cause highest pdGain for lowest power */ |
651 | numVpd = data->pDataPerPDGain[jj].numVpd; |
652 | if (numVpd > 0) { |
653 | Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; |
654 | return(Pmin); |
655 | } |
656 | } |
657 | return(Pmin); |
658 | } |
659 | |
660 | static int16_t |
661 | ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) |
662 | { |
663 | uint32_t ii; |
664 | uint16_t Pmax=0,numVpd; |
665 | |
666 | for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { |
667 | /* work forwards cuase lowest pdGain for highest power */ |
668 | numVpd = data->pDataPerPDGain[ii].numVpd; |
669 | if (numVpd > 0) { |
670 | Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; |
671 | return(Pmax); |
672 | } |
673 | } |
674 | return(Pmax); |
675 | } |
676 | |
677 | static HAL_BOOL |
678 | ar5413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan, |
679 | int16_t *maxPow, int16_t *minPow) |
680 | { |
681 | const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; |
682 | const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; |
683 | const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL; |
684 | uint16_t numChannels; |
685 | int totalD,totalF, totalMin,last, i; |
686 | |
687 | *maxPow = 0; |
688 | |
689 | if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) |
690 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; |
691 | else if (IS_CHAN_B(chan)) |
692 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; |
693 | else { |
694 | HALASSERT(IS_CHAN_5GHZ(chan)); |
695 | pRawDataset = &ee->ee_rawDataset2413[headerInfo11A]; |
696 | } |
697 | |
698 | numChannels = pRawDataset->numChannels; |
699 | data = pRawDataset->pDataPerChannel; |
700 | |
701 | /* Make sure the channel is in the range of the TP values |
702 | * (freq piers) |
703 | */ |
704 | if (numChannels < 1) |
705 | return(AH_FALSE); |
706 | |
707 | if ((chan->channel < data[0].channelValue) || |
708 | (chan->channel > data[numChannels-1].channelValue)) { |
709 | if (chan->channel < data[0].channelValue) { |
710 | *maxPow = ar5413GetMaxPower(ah, &data[0]); |
711 | *minPow = ar5413GetMinPower(ah, &data[0]); |
712 | return(AH_TRUE); |
713 | } else { |
714 | *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]); |
715 | *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]); |
716 | return(AH_TRUE); |
717 | } |
718 | } |
719 | |
720 | /* Linearly interpolate the power value now */ |
721 | for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue); |
722 | last = i++); |
723 | totalD = data[i].channelValue - data[last].channelValue; |
724 | if (totalD > 0) { |
725 | totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]); |
726 | *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + |
727 | ar5413GetMaxPower(ah, &data[last])*totalD)/totalD); |
728 | totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]); |
729 | *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + |
730 | ar5413GetMinPower(ah, &data[last])*totalD)/totalD); |
731 | return(AH_TRUE); |
732 | } else { |
733 | if (chan->channel == data[i].channelValue) { |
734 | *maxPow = ar5413GetMaxPower(ah, &data[i]); |
735 | *minPow = ar5413GetMinPower(ah, &data[i]); |
736 | return(AH_TRUE); |
737 | } else |
738 | return(AH_FALSE); |
739 | } |
740 | } |
741 | |
742 | /* |
743 | * Free memory for analog bank scratch buffers |
744 | */ |
745 | static void |
746 | ar5413RfDetach(struct ath_hal *ah) |
747 | { |
748 | struct ath_hal_5212 *ahp = AH5212(ah); |
749 | |
750 | HALASSERT(ahp->ah_rfHal != AH_NULL); |
751 | ath_hal_free(ahp->ah_rfHal); |
752 | ahp->ah_rfHal = AH_NULL; |
753 | } |
754 | |
755 | /* |
756 | * Allocate memory for analog bank scratch buffers |
757 | * Scratch Buffer will be reinitialized every reset so no need to zero now |
758 | */ |
759 | static HAL_BOOL |
760 | ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status) |
761 | { |
762 | struct ath_hal_5212 *ahp = AH5212(ah); |
763 | struct ar5413State *priv; |
764 | |
765 | HALASSERT(ah->ah_magic == AR5212_MAGIC); |
766 | |
767 | HALASSERT(ahp->ah_rfHal == AH_NULL); |
768 | priv = ath_hal_malloc(sizeof(struct ar5413State)); |
769 | if (priv == AH_NULL) { |
770 | HALDEBUG(ah, HAL_DEBUG_ANY, |
771 | "%s: cannot allocate private state\n" , __func__); |
772 | *status = HAL_ENOMEM; /* XXX */ |
773 | return AH_FALSE; |
774 | } |
775 | priv->base.rfDetach = ar5413RfDetach; |
776 | priv->base.writeRegs = ar5413WriteRegs; |
777 | priv->base.getRfBank = ar5413GetRfBank; |
778 | priv->base.setChannel = ar5413SetChannel; |
779 | priv->base.setRfRegs = ar5413SetRfRegs; |
780 | priv->base.setPowerTable = ar5413SetPowerTable; |
781 | priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower; |
782 | priv->base.getNfAdjust = ar5212GetNfAdjust; |
783 | |
784 | ahp->ah_pcdacTable = priv->pcdacTable; |
785 | ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); |
786 | ahp->ah_rfHal = &priv->base; |
787 | |
788 | return AH_TRUE; |
789 | } |
790 | |
791 | static HAL_BOOL |
792 | ar5413Probe(struct ath_hal *ah) |
793 | { |
794 | return IS_5413(ah); |
795 | } |
796 | AH_RF(RF5413, ar5413Probe, ar5413RfAttach); |
797 | |