1 | /* $NetBSD: eso.c,v 1.66 2016/07/07 06:55:41 msaitoh Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 2008 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * This code is derived from software developed for The NetBSD Foundation |
8 | * by Andrew Doran. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
29 | * POSSIBILITY OF SUCH DAMAGE. |
30 | */ |
31 | |
32 | /* |
33 | * Copyright (c) 1999, 2000, 2004 Klaus J. Klein |
34 | * All rights reserved. |
35 | * |
36 | * Redistribution and use in source and binary forms, with or without |
37 | * modification, are permitted provided that the following conditions |
38 | * are met: |
39 | * 1. Redistributions of source code must retain the above copyright |
40 | * notice, this list of conditions and the following disclaimer. |
41 | * 2. Redistributions in binary form must reproduce the above copyright |
42 | * notice, this list of conditions and the following disclaimer in the |
43 | * documentation and/or other materials provided with the distribution. |
44 | * 3. The name of the author may not be used to endorse or promote products |
45 | * derived from this software without specific prior written permission. |
46 | * |
47 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
48 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
49 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
50 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
51 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
52 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
53 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
54 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
55 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
56 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
57 | * SUCH DAMAGE. |
58 | */ |
59 | |
60 | /* |
61 | * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver. |
62 | */ |
63 | |
64 | #include <sys/cdefs.h> |
65 | __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.66 2016/07/07 06:55:41 msaitoh Exp $" ); |
66 | |
67 | #include "mpu.h" |
68 | |
69 | #include <sys/param.h> |
70 | #include <sys/systm.h> |
71 | #include <sys/kernel.h> |
72 | #include <sys/kmem.h> |
73 | #include <sys/device.h> |
74 | #include <sys/queue.h> |
75 | #include <sys/proc.h> |
76 | |
77 | #include <dev/pci/pcidevs.h> |
78 | #include <dev/pci/pcivar.h> |
79 | |
80 | #include <sys/audioio.h> |
81 | #include <dev/audio_if.h> |
82 | |
83 | #include <dev/mulaw.h> |
84 | #include <dev/auconv.h> |
85 | |
86 | #include <dev/ic/mpuvar.h> |
87 | #include <dev/ic/i8237reg.h> |
88 | #include <dev/pci/esoreg.h> |
89 | #include <dev/pci/esovar.h> |
90 | |
91 | #include <sys/bus.h> |
92 | #include <sys/intr.h> |
93 | |
94 | /* |
95 | * XXX Work around the 24-bit implementation limit of the Audio 1 DMA |
96 | * XXX engine by allocating through the ISA DMA tag. |
97 | */ |
98 | #if defined(amd64) || defined(i386) |
99 | #include <dev/isa/isavar.h> |
100 | #endif |
101 | |
102 | #if defined(AUDIO_DEBUG) || defined(DEBUG) |
103 | #define DPRINTF(x) printf x |
104 | #else |
105 | #define DPRINTF(x) |
106 | #endif |
107 | |
108 | struct eso_dma { |
109 | bus_dma_tag_t ed_dmat; |
110 | bus_dmamap_t ed_map; |
111 | void * ed_kva; |
112 | bus_dma_segment_t ed_segs[1]; |
113 | int ed_nsegs; |
114 | size_t ed_size; |
115 | SLIST_ENTRY(eso_dma) ed_slist; |
116 | }; |
117 | |
118 | #define KVADDR(dma) ((void *)(dma)->ed_kva) |
119 | #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr) |
120 | |
121 | /* Autoconfiguration interface */ |
122 | static int eso_match(device_t, cfdata_t, void *); |
123 | static void eso_attach(device_t, device_t, void *); |
124 | static void eso_defer(device_t); |
125 | static int eso_print(void *, const char *); |
126 | |
127 | CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc), |
128 | eso_match, eso_attach, NULL, NULL); |
129 | |
130 | /* PCI interface */ |
131 | static int eso_intr(void *); |
132 | |
133 | /* MI audio layer interface */ |
134 | static int eso_query_encoding(void *, struct audio_encoding *); |
135 | static int eso_set_params(void *, int, int, audio_params_t *, |
136 | audio_params_t *, stream_filter_list_t *, |
137 | stream_filter_list_t *); |
138 | static int eso_round_blocksize(void *, int, int, const audio_params_t *); |
139 | static int eso_halt_output(void *); |
140 | static int eso_halt_input(void *); |
141 | static int eso_getdev(void *, struct audio_device *); |
142 | static int eso_set_port(void *, mixer_ctrl_t *); |
143 | static int eso_get_port(void *, mixer_ctrl_t *); |
144 | static int eso_query_devinfo(void *, mixer_devinfo_t *); |
145 | static void * eso_allocm(void *, int, size_t); |
146 | static void eso_freem(void *, void *, size_t); |
147 | static size_t eso_round_buffersize(void *, int, size_t); |
148 | static paddr_t eso_mappage(void *, void *, off_t, int); |
149 | static int eso_get_props(void *); |
150 | static int eso_trigger_output(void *, void *, void *, int, |
151 | void (*)(void *), void *, const audio_params_t *); |
152 | static int eso_trigger_input(void *, void *, void *, int, |
153 | void (*)(void *), void *, const audio_params_t *); |
154 | static void eso_get_locks(void *, kmutex_t **, kmutex_t **); |
155 | |
156 | static const struct audio_hw_if eso_hw_if = { |
157 | NULL, /* open */ |
158 | NULL, /* close */ |
159 | NULL, /* drain */ |
160 | eso_query_encoding, |
161 | eso_set_params, |
162 | eso_round_blocksize, |
163 | NULL, /* commit_settings */ |
164 | NULL, /* init_output */ |
165 | NULL, /* init_input */ |
166 | NULL, /* start_output */ |
167 | NULL, /* start_input */ |
168 | eso_halt_output, |
169 | eso_halt_input, |
170 | NULL, /* speaker_ctl */ |
171 | eso_getdev, |
172 | NULL, /* setfd */ |
173 | eso_set_port, |
174 | eso_get_port, |
175 | eso_query_devinfo, |
176 | eso_allocm, |
177 | eso_freem, |
178 | eso_round_buffersize, |
179 | eso_mappage, |
180 | eso_get_props, |
181 | eso_trigger_output, |
182 | eso_trigger_input, |
183 | NULL, /* dev_ioctl */ |
184 | eso_get_locks, |
185 | }; |
186 | |
187 | static const char * const eso_rev2model[] = { |
188 | "ES1938" , |
189 | "ES1946" , |
190 | "ES1946 Revision E" |
191 | }; |
192 | |
193 | #define ESO_NFORMATS 8 |
194 | static const struct audio_format eso_formats[ESO_NFORMATS] = { |
195 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, |
196 | 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, |
197 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, |
198 | 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, |
199 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16, |
200 | 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, |
201 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16, |
202 | 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, |
203 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8, |
204 | 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, |
205 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8, |
206 | 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}, |
207 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, |
208 | 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}}, |
209 | {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, |
210 | 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}} |
211 | }; |
212 | |
213 | |
214 | /* |
215 | * Utility routines |
216 | */ |
217 | /* Register access etc. */ |
218 | static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t); |
219 | static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t); |
220 | static uint8_t eso_read_rdr(struct eso_softc *); |
221 | static void eso_reload_master_vol(struct eso_softc *); |
222 | static int eso_reset(struct eso_softc *); |
223 | static void eso_set_gain(struct eso_softc *, unsigned int); |
224 | static int eso_set_recsrc(struct eso_softc *, unsigned int); |
225 | static int eso_set_monooutsrc(struct eso_softc *, unsigned int); |
226 | static int eso_set_monoinbypass(struct eso_softc *, unsigned int); |
227 | static int eso_set_preamp(struct eso_softc *, unsigned int); |
228 | static void eso_write_cmd(struct eso_softc *, uint8_t); |
229 | static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t); |
230 | static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t); |
231 | /* DMA memory allocation */ |
232 | static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t, |
233 | int, struct eso_dma *); |
234 | static void eso_freemem(struct eso_dma *); |
235 | static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *); |
236 | |
237 | |
238 | static int |
239 | eso_match(device_t parent, cfdata_t match, void *aux) |
240 | { |
241 | struct pci_attach_args *pa; |
242 | |
243 | pa = aux; |
244 | if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH && |
245 | PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1) |
246 | return 1; |
247 | |
248 | return 0; |
249 | } |
250 | |
251 | static void |
252 | eso_attach(device_t parent, device_t self, void *aux) |
253 | { |
254 | struct eso_softc *sc; |
255 | struct pci_attach_args *pa; |
256 | struct audio_attach_args aa; |
257 | pci_intr_handle_t ih; |
258 | bus_addr_t vcbase; |
259 | const char *intrstring; |
260 | int idx, error; |
261 | uint8_t a2mode, mvctl; |
262 | char intrbuf[PCI_INTRSTR_LEN]; |
263 | |
264 | sc = device_private(self); |
265 | sc->sc_dev = self; |
266 | pa = aux; |
267 | aprint_naive(": Audio controller\n" ); |
268 | |
269 | mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); |
270 | mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); |
271 | |
272 | sc->sc_revision = PCI_REVISION(pa->pa_class); |
273 | aprint_normal(": ESS Solo-1 PCI AudioDrive " ); |
274 | if (sc->sc_revision < |
275 | sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) |
276 | aprint_normal("%s\n" , eso_rev2model[sc->sc_revision]); |
277 | else |
278 | aprint_normal("(unknown rev. 0x%02x)\n" , sc->sc_revision); |
279 | |
280 | /* Map I/O registers. */ |
281 | if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0, |
282 | &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { |
283 | aprint_error_dev(sc->sc_dev, "can't map I/O space\n" ); |
284 | return; |
285 | } |
286 | if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0, |
287 | &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) { |
288 | aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n" ); |
289 | return; |
290 | } |
291 | if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0, |
292 | &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) { |
293 | aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n" ); |
294 | /* Don't bail out yet: we can map it later, see below. */ |
295 | vcbase = 0; |
296 | sc->sc_vcsize = 0x10; /* From the data sheet. */ |
297 | } |
298 | if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0, |
299 | &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) { |
300 | aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n" ); |
301 | return; |
302 | } |
303 | if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0, |
304 | &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) { |
305 | aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n" ); |
306 | return; |
307 | } |
308 | |
309 | sc->sc_dmat = pa->pa_dmat; |
310 | SLIST_INIT(&sc->sc_dmas); |
311 | sc->sc_dmac_configured = 0; |
312 | |
313 | /* Enable bus mastering. */ |
314 | pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, |
315 | pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | |
316 | PCI_COMMAND_MASTER_ENABLE); |
317 | |
318 | /* Reset the device; bail out upon failure. */ |
319 | mutex_spin_enter(&sc->sc_intr_lock); |
320 | error = eso_reset(sc); |
321 | mutex_spin_exit(&sc->sc_intr_lock); |
322 | if (error != 0) { |
323 | aprint_error_dev(sc->sc_dev, "can't reset\n" ); |
324 | return; |
325 | } |
326 | |
327 | /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */ |
328 | pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C, |
329 | pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) & |
330 | ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK)); |
331 | |
332 | /* Enable the relevant (DMA) interrupts. */ |
333 | bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL, |
334 | ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ | |
335 | ESO_IO_IRQCTL_MPUIRQ); |
336 | |
337 | mutex_spin_enter(&sc->sc_intr_lock); |
338 | |
339 | /* Set up A1's sample rate generator for new-style parameters. */ |
340 | a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE); |
341 | a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC; |
342 | eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode); |
343 | |
344 | /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/ |
345 | mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); |
346 | mvctl &= ~ESO_MIXREG_MVCTL_SPLIT; |
347 | mvctl |= ESO_MIXREG_MVCTL_HVIRQM; |
348 | eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); |
349 | |
350 | /* Set mixer regs to something reasonable, needs work. */ |
351 | sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0; |
352 | eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE); |
353 | eso_set_monoinbypass(sc, 0); |
354 | eso_set_preamp(sc, 1); |
355 | for (idx = 0; idx < ESO_NGAINDEVS; idx++) { |
356 | int v; |
357 | |
358 | switch (idx) { |
359 | case ESO_MIC_PLAY_VOL: |
360 | case ESO_LINE_PLAY_VOL: |
361 | case ESO_CD_PLAY_VOL: |
362 | case ESO_MONO_PLAY_VOL: |
363 | case ESO_AUXB_PLAY_VOL: |
364 | case ESO_DAC_REC_VOL: |
365 | case ESO_LINE_REC_VOL: |
366 | case ESO_SYNTH_REC_VOL: |
367 | case ESO_CD_REC_VOL: |
368 | case ESO_MONO_REC_VOL: |
369 | case ESO_AUXB_REC_VOL: |
370 | case ESO_SPATIALIZER: |
371 | v = 0; |
372 | break; |
373 | case ESO_MASTER_VOL: |
374 | v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2); |
375 | break; |
376 | default: |
377 | v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2); |
378 | break; |
379 | } |
380 | sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v; |
381 | eso_set_gain(sc, idx); |
382 | } |
383 | |
384 | eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC); |
385 | |
386 | mutex_spin_exit(&sc->sc_intr_lock); |
387 | |
388 | /* Map and establish the interrupt. */ |
389 | if (pci_intr_map(pa, &ih)) { |
390 | aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n" ); |
391 | return; |
392 | } |
393 | |
394 | intrstring = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf)); |
395 | sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc); |
396 | if (sc->sc_ih == NULL) { |
397 | aprint_error_dev(sc->sc_dev, "couldn't establish interrupt" ); |
398 | if (intrstring != NULL) |
399 | aprint_error(" at %s" , intrstring); |
400 | aprint_error("\n" ); |
401 | mutex_destroy(&sc->sc_lock); |
402 | mutex_destroy(&sc->sc_intr_lock); |
403 | return; |
404 | } |
405 | aprint_normal_dev(sc->sc_dev, "interrupting at %s\n" , intrstring); |
406 | |
407 | cv_init(&sc->sc_pcv, "esoho" ); |
408 | cv_init(&sc->sc_rcv, "esohi" ); |
409 | |
410 | /* |
411 | * Set up the DDMA Control register; a suitable I/O region has been |
412 | * supposedly mapped in the VC base address register. |
413 | * |
414 | * The Solo-1 has an ... interesting silicon bug that causes it to |
415 | * not respond to I/O space accesses to the Audio 1 DMA controller |
416 | * if the latter's mapping base address is aligned on a 1K boundary. |
417 | * As a consequence, it is quite possible for the mapping provided |
418 | * in the VC BAR to be useless. To work around this, we defer this |
419 | * part until all autoconfiguration on our parent bus is completed |
420 | * and then try to map it ourselves in fulfillment of the constraint. |
421 | * |
422 | * According to the register map we may write to the low 16 bits |
423 | * only, but experimenting has shown we're safe. |
424 | * -kjk |
425 | */ |
426 | if (ESO_VALID_DDMAC_BASE(vcbase)) { |
427 | pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, |
428 | vcbase | ESO_PCI_DDMAC_DE); |
429 | sc->sc_dmac_configured = 1; |
430 | |
431 | aprint_normal_dev(sc->sc_dev, |
432 | "mapping Audio 1 DMA using VC I/O space at 0x%lx\n" , |
433 | (unsigned long)vcbase); |
434 | } else { |
435 | DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n" , |
436 | device_xname(sc->sc_dev), (unsigned long)vcbase)); |
437 | sc->sc_pa = *pa; |
438 | config_defer(self, eso_defer); |
439 | } |
440 | |
441 | audio_attach_mi(&eso_hw_if, sc, sc->sc_dev); |
442 | |
443 | aa.type = AUDIODEV_TYPE_OPL; |
444 | aa.hwif = NULL; |
445 | aa.hdl = NULL; |
446 | (void)config_found(sc->sc_dev, &aa, audioprint); |
447 | |
448 | aa.type = AUDIODEV_TYPE_MPU; |
449 | aa.hwif = NULL; |
450 | aa.hdl = NULL; |
451 | sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint); |
452 | if (sc->sc_mpudev != NULL) { |
453 | /* Unmask the MPU irq. */ |
454 | mutex_spin_enter(&sc->sc_intr_lock); |
455 | mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL); |
456 | mvctl |= ESO_MIXREG_MVCTL_MPUIRQM; |
457 | eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl); |
458 | mutex_spin_exit(&sc->sc_intr_lock); |
459 | } |
460 | |
461 | aa.type = AUDIODEV_TYPE_AUX; |
462 | aa.hwif = NULL; |
463 | aa.hdl = NULL; |
464 | (void)config_found(sc->sc_dev, &aa, eso_print); |
465 | } |
466 | |
467 | static void |
468 | eso_defer(device_t self) |
469 | { |
470 | struct eso_softc *sc; |
471 | struct pci_attach_args *pa; |
472 | bus_addr_t addr, start; |
473 | |
474 | sc = device_private(self); |
475 | pa = &sc->sc_pa; |
476 | aprint_normal_dev(sc->sc_dev, "" ); |
477 | |
478 | /* |
479 | * This is outright ugly, but since we must not make assumptions |
480 | * on the underlying allocator's behaviour it's the most straight- |
481 | * forward way to implement it. Note that we skip over the first |
482 | * 1K region, which is typically occupied by an attached ISA bus. |
483 | */ |
484 | mutex_enter(&sc->sc_lock); |
485 | for (start = 0x0400; start < 0xffff; start += 0x0400) { |
486 | if (bus_space_alloc(sc->sc_iot, |
487 | start + sc->sc_vcsize, start + 0x0400 - 1, |
488 | sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr, |
489 | &sc->sc_dmac_ioh) != 0) |
490 | continue; |
491 | |
492 | mutex_spin_enter(&sc->sc_intr_lock); |
493 | pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC, |
494 | addr | ESO_PCI_DDMAC_DE); |
495 | mutex_spin_exit(&sc->sc_intr_lock); |
496 | sc->sc_dmac_iot = sc->sc_iot; |
497 | sc->sc_dmac_configured = 1; |
498 | aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n" , |
499 | (unsigned long)addr); |
500 | |
501 | mutex_exit(&sc->sc_lock); |
502 | return; |
503 | } |
504 | mutex_exit(&sc->sc_lock); |
505 | |
506 | aprint_error("can't map Audio 1 DMA into I/O space\n" ); |
507 | } |
508 | |
509 | /* ARGSUSED */ |
510 | static int |
511 | eso_print(void *aux, const char *pnp) |
512 | { |
513 | |
514 | /* Only joys can attach via this; easy. */ |
515 | if (pnp) |
516 | aprint_normal("joy at %s:" , pnp); |
517 | |
518 | return UNCONF; |
519 | } |
520 | |
521 | static void |
522 | eso_write_cmd(struct eso_softc *sc, uint8_t cmd) |
523 | { |
524 | int i; |
525 | |
526 | /* Poll for busy indicator to become clear. */ |
527 | for (i = 0; i < ESO_WDR_TIMEOUT; i++) { |
528 | if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR) |
529 | & ESO_SB_RSR_BUSY) == 0) { |
530 | bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, |
531 | ESO_SB_WDR, cmd); |
532 | return; |
533 | } else { |
534 | delay(10); |
535 | } |
536 | } |
537 | |
538 | printf("%s: WDR timeout\n" , device_xname(sc->sc_dev)); |
539 | return; |
540 | } |
541 | |
542 | /* Write to a controller register */ |
543 | static void |
544 | eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val) |
545 | { |
546 | |
547 | /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */ |
548 | |
549 | eso_write_cmd(sc, reg); |
550 | eso_write_cmd(sc, val); |
551 | } |
552 | |
553 | /* Read out the Read Data Register */ |
554 | static uint8_t |
555 | eso_read_rdr(struct eso_softc *sc) |
556 | { |
557 | int i; |
558 | |
559 | for (i = 0; i < ESO_RDR_TIMEOUT; i++) { |
560 | if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, |
561 | ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) { |
562 | return (bus_space_read_1(sc->sc_sb_iot, |
563 | sc->sc_sb_ioh, ESO_SB_RDR)); |
564 | } else { |
565 | delay(10); |
566 | } |
567 | } |
568 | |
569 | printf("%s: RDR timeout\n" , device_xname(sc->sc_dev)); |
570 | return (-1); |
571 | } |
572 | |
573 | static uint8_t |
574 | eso_read_ctlreg(struct eso_softc *sc, uint8_t reg) |
575 | { |
576 | |
577 | eso_write_cmd(sc, ESO_CMD_RCR); |
578 | eso_write_cmd(sc, reg); |
579 | return eso_read_rdr(sc); |
580 | } |
581 | |
582 | static void |
583 | eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val) |
584 | { |
585 | |
586 | KASSERT(mutex_owned(&sc->sc_intr_lock)); |
587 | |
588 | /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */ |
589 | |
590 | bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); |
591 | bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val); |
592 | } |
593 | |
594 | static uint8_t |
595 | eso_read_mixreg(struct eso_softc *sc, uint8_t reg) |
596 | { |
597 | uint8_t val; |
598 | |
599 | KASSERT(mutex_owned(&sc->sc_intr_lock)); |
600 | |
601 | bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg); |
602 | val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA); |
603 | |
604 | return val; |
605 | } |
606 | |
607 | static int |
608 | eso_intr(void *hdl) |
609 | { |
610 | struct eso_softc *sc = hdl; |
611 | #if NMPU > 0 |
612 | struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev); |
613 | #endif |
614 | uint8_t irqctl; |
615 | |
616 | mutex_spin_enter(&sc->sc_intr_lock); |
617 | |
618 | irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL); |
619 | |
620 | /* If it wasn't ours, that's all she wrote. */ |
621 | if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | |
622 | ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) { |
623 | mutex_spin_exit(&sc->sc_intr_lock); |
624 | return 0; |
625 | } |
626 | |
627 | if (irqctl & ESO_IO_IRQCTL_A1IRQ) { |
628 | /* Clear interrupt. */ |
629 | (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, |
630 | ESO_SB_RBSR); |
631 | |
632 | if (sc->sc_rintr) |
633 | sc->sc_rintr(sc->sc_rarg); |
634 | else |
635 | cv_broadcast(&sc->sc_rcv); |
636 | } |
637 | |
638 | if (irqctl & ESO_IO_IRQCTL_A2IRQ) { |
639 | /* |
640 | * Clear the A2 IRQ latch: the cached value reflects the |
641 | * current DAC settings with the IRQ latch bit not set. |
642 | */ |
643 | eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); |
644 | |
645 | if (sc->sc_pintr) |
646 | sc->sc_pintr(sc->sc_parg); |
647 | else |
648 | cv_broadcast(&sc->sc_pcv); |
649 | } |
650 | |
651 | if (irqctl & ESO_IO_IRQCTL_HVIRQ) { |
652 | /* Clear interrupt. */ |
653 | eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR); |
654 | |
655 | /* |
656 | * Raise a flag to cause a lazy update of the in-softc gain |
657 | * values the next time the software mixer is read to keep |
658 | * interrupt service cost low. ~0 cannot occur otherwise |
659 | * as the master volume has a precision of 6 bits only. |
660 | */ |
661 | sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0; |
662 | } |
663 | |
664 | #if NMPU > 0 |
665 | if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL) |
666 | mpu_intr(sc_mpu); |
667 | #endif |
668 | |
669 | mutex_spin_exit(&sc->sc_intr_lock); |
670 | return 1; |
671 | } |
672 | |
673 | /* Perform a software reset, including DMA FIFOs. */ |
674 | static int |
675 | eso_reset(struct eso_softc *sc) |
676 | { |
677 | int i; |
678 | |
679 | bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, |
680 | ESO_SB_RESET_SW | ESO_SB_RESET_FIFO); |
681 | /* `Delay' suggested in the data sheet. */ |
682 | (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS); |
683 | bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0); |
684 | |
685 | /* Wait for reset to take effect. */ |
686 | for (i = 0; i < ESO_RESET_TIMEOUT; i++) { |
687 | /* Poll for data to become available. */ |
688 | if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, |
689 | ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 && |
690 | bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, |
691 | ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) { |
692 | |
693 | /* Activate Solo-1 extension commands. */ |
694 | eso_write_cmd(sc, ESO_CMD_EXTENB); |
695 | /* Reset mixer registers. */ |
696 | eso_write_mixreg(sc, ESO_MIXREG_RESET, |
697 | ESO_MIXREG_RESET_RESET); |
698 | |
699 | return 0; |
700 | } else { |
701 | delay(1000); |
702 | } |
703 | } |
704 | |
705 | printf("%s: reset timeout\n" , device_xname(sc->sc_dev)); |
706 | return -1; |
707 | } |
708 | |
709 | static int |
710 | eso_query_encoding(void *hdl, struct audio_encoding *fp) |
711 | { |
712 | |
713 | switch (fp->index) { |
714 | case 0: |
715 | strcpy(fp->name, AudioEulinear); |
716 | fp->encoding = AUDIO_ENCODING_ULINEAR; |
717 | fp->precision = 8; |
718 | fp->flags = 0; |
719 | break; |
720 | case 1: |
721 | strcpy(fp->name, AudioEmulaw); |
722 | fp->encoding = AUDIO_ENCODING_ULAW; |
723 | fp->precision = 8; |
724 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
725 | break; |
726 | case 2: |
727 | strcpy(fp->name, AudioEalaw); |
728 | fp->encoding = AUDIO_ENCODING_ALAW; |
729 | fp->precision = 8; |
730 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
731 | break; |
732 | case 3: |
733 | strcpy(fp->name, AudioEslinear); |
734 | fp->encoding = AUDIO_ENCODING_SLINEAR; |
735 | fp->precision = 8; |
736 | fp->flags = 0; |
737 | break; |
738 | case 4: |
739 | strcpy(fp->name, AudioEslinear_le); |
740 | fp->encoding = AUDIO_ENCODING_SLINEAR_LE; |
741 | fp->precision = 16; |
742 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
743 | break; |
744 | case 5: |
745 | strcpy(fp->name, AudioEulinear_le); |
746 | fp->encoding = AUDIO_ENCODING_ULINEAR_LE; |
747 | fp->precision = 16; |
748 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
749 | break; |
750 | case 6: |
751 | strcpy(fp->name, AudioEslinear_be); |
752 | fp->encoding = AUDIO_ENCODING_SLINEAR_BE; |
753 | fp->precision = 16; |
754 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
755 | break; |
756 | case 7: |
757 | strcpy(fp->name, AudioEulinear_be); |
758 | fp->encoding = AUDIO_ENCODING_ULINEAR_BE; |
759 | fp->precision = 16; |
760 | fp->flags = AUDIO_ENCODINGFLAG_EMULATED; |
761 | break; |
762 | default: |
763 | return EINVAL; |
764 | } |
765 | |
766 | return 0; |
767 | } |
768 | |
769 | static int |
770 | eso_set_params(void *hdl, int setmode, int usemode, |
771 | audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil, |
772 | stream_filter_list_t *rfil) |
773 | { |
774 | struct eso_softc *sc; |
775 | struct audio_params *p; |
776 | stream_filter_list_t *fil; |
777 | int mode, r[2], rd[2], ar[2], clk; |
778 | unsigned int srg, fltdiv; |
779 | int i; |
780 | |
781 | sc = hdl; |
782 | for (mode = AUMODE_RECORD; mode != -1; |
783 | mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { |
784 | if ((setmode & mode) == 0) |
785 | continue; |
786 | |
787 | p = (mode == AUMODE_PLAY) ? play : rec; |
788 | |
789 | if (p->sample_rate < ESO_MINRATE || |
790 | p->sample_rate > ESO_MAXRATE || |
791 | (p->precision != 8 && p->precision != 16) || |
792 | (p->channels != 1 && p->channels != 2)) |
793 | return EINVAL; |
794 | |
795 | /* |
796 | * We'll compute both possible sample rate dividers and pick |
797 | * the one with the least error. |
798 | */ |
799 | #define ABS(x) ((x) < 0 ? -(x) : (x)) |
800 | r[0] = ESO_CLK0 / |
801 | (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate)); |
802 | r[1] = ESO_CLK1 / |
803 | (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate)); |
804 | |
805 | ar[0] = p->sample_rate - r[0]; |
806 | ar[1] = p->sample_rate - r[1]; |
807 | clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0; |
808 | srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00); |
809 | |
810 | /* Roll-off frequency of 87%, as in the ES1888 driver. */ |
811 | fltdiv = 256 - 200279L / r[clk]; |
812 | |
813 | /* Update to reflect the possibly inexact rate. */ |
814 | p->sample_rate = r[clk]; |
815 | |
816 | fil = (mode == AUMODE_PLAY) ? pfil : rfil; |
817 | i = auconv_set_converter(eso_formats, ESO_NFORMATS, |
818 | mode, p, FALSE, fil); |
819 | if (i < 0) |
820 | return EINVAL; |
821 | |
822 | mutex_spin_enter(&sc->sc_intr_lock); |
823 | if (mode == AUMODE_RECORD) { |
824 | /* Audio 1 */ |
825 | DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n" , srg, fltdiv)); |
826 | eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg); |
827 | eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv); |
828 | } else { |
829 | /* Audio 2 */ |
830 | DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n" , srg, fltdiv)); |
831 | eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg); |
832 | eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv); |
833 | } |
834 | mutex_spin_exit(&sc->sc_intr_lock); |
835 | #undef ABS |
836 | |
837 | } |
838 | |
839 | return 0; |
840 | } |
841 | |
842 | static int |
843 | eso_round_blocksize(void *hdl, int blk, int mode, |
844 | const audio_params_t *param) |
845 | { |
846 | |
847 | return blk & -32; /* keep good alignment; at least 16 req'd */ |
848 | } |
849 | |
850 | static int |
851 | eso_halt_output(void *hdl) |
852 | { |
853 | struct eso_softc *sc; |
854 | int error; |
855 | |
856 | sc = hdl; |
857 | DPRINTF(("%s: halt_output\n" , device_xname(sc->sc_dev))); |
858 | |
859 | /* |
860 | * Disable auto-initialize DMA, allowing the FIFO to drain and then |
861 | * stop. The interrupt callback pointer is cleared at this |
862 | * point so that an outstanding FIFO interrupt for the remaining data |
863 | * will be acknowledged without further processing. |
864 | * |
865 | * This does not immediately `abort' an operation in progress (c.f. |
866 | * audio(9)) but is the method to leave the FIFO behind in a clean |
867 | * state with the least hair. (Besides, that item needs to be |
868 | * rephrased for trigger_*()-based DMA environments.) |
869 | */ |
870 | eso_write_mixreg(sc, ESO_MIXREG_A2C1, |
871 | ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB); |
872 | bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, |
873 | ESO_IO_A2DMAM_DMAENB); |
874 | |
875 | sc->sc_pintr = NULL; |
876 | mutex_exit(&sc->sc_lock); |
877 | error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain); |
878 | if (!mutex_tryenter(&sc->sc_lock)) { |
879 | mutex_spin_exit(&sc->sc_intr_lock); |
880 | mutex_enter(&sc->sc_lock); |
881 | mutex_spin_enter(&sc->sc_intr_lock); |
882 | } |
883 | |
884 | /* Shut down DMA completely. */ |
885 | eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0); |
886 | bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0); |
887 | |
888 | return error == EWOULDBLOCK ? 0 : error; |
889 | } |
890 | |
891 | static int |
892 | eso_halt_input(void *hdl) |
893 | { |
894 | struct eso_softc *sc; |
895 | int error; |
896 | |
897 | sc = hdl; |
898 | DPRINTF(("%s: halt_input\n" , device_xname(sc->sc_dev))); |
899 | |
900 | /* Just like eso_halt_output(), but for Audio 1. */ |
901 | eso_write_ctlreg(sc, ESO_CTLREG_A1C2, |
902 | ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC | |
903 | ESO_CTLREG_A1C2_DMAENB); |
904 | bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, |
905 | DMA37MD_WRITE | DMA37MD_DEMAND); |
906 | |
907 | sc->sc_rintr = NULL; |
908 | mutex_exit(&sc->sc_lock); |
909 | error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain); |
910 | if (!mutex_tryenter(&sc->sc_lock)) { |
911 | mutex_spin_exit(&sc->sc_intr_lock); |
912 | mutex_enter(&sc->sc_lock); |
913 | mutex_spin_enter(&sc->sc_intr_lock); |
914 | } |
915 | |
916 | /* Shut down DMA completely. */ |
917 | eso_write_ctlreg(sc, ESO_CTLREG_A1C2, |
918 | ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC); |
919 | bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, |
920 | ESO_DMAC_MASK_MASK); |
921 | |
922 | return error == EWOULDBLOCK ? 0 : error; |
923 | } |
924 | |
925 | static int |
926 | eso_getdev(void *hdl, struct audio_device *retp) |
927 | { |
928 | struct eso_softc *sc; |
929 | |
930 | sc = hdl; |
931 | strncpy(retp->name, "ESS Solo-1" , sizeof (retp->name)); |
932 | snprintf(retp->version, sizeof (retp->version), "0x%02x" , |
933 | sc->sc_revision); |
934 | if (sc->sc_revision < |
935 | sizeof (eso_rev2model) / sizeof (eso_rev2model[0])) |
936 | strncpy(retp->config, eso_rev2model[sc->sc_revision], |
937 | sizeof (retp->config)); |
938 | else |
939 | strncpy(retp->config, "unknown" , sizeof (retp->config)); |
940 | |
941 | return 0; |
942 | } |
943 | |
944 | static int |
945 | eso_set_port(void *hdl, mixer_ctrl_t *cp) |
946 | { |
947 | struct eso_softc *sc; |
948 | unsigned int lgain, rgain; |
949 | uint8_t tmp; |
950 | int error; |
951 | |
952 | sc = hdl; |
953 | error = 0; |
954 | |
955 | mutex_spin_enter(&sc->sc_intr_lock); |
956 | |
957 | switch (cp->dev) { |
958 | case ESO_DAC_PLAY_VOL: |
959 | case ESO_MIC_PLAY_VOL: |
960 | case ESO_LINE_PLAY_VOL: |
961 | case ESO_SYNTH_PLAY_VOL: |
962 | case ESO_CD_PLAY_VOL: |
963 | case ESO_AUXB_PLAY_VOL: |
964 | case ESO_RECORD_VOL: |
965 | case ESO_DAC_REC_VOL: |
966 | case ESO_MIC_REC_VOL: |
967 | case ESO_LINE_REC_VOL: |
968 | case ESO_SYNTH_REC_VOL: |
969 | case ESO_CD_REC_VOL: |
970 | case ESO_AUXB_REC_VOL: |
971 | if (cp->type != AUDIO_MIXER_VALUE) { |
972 | error = EINVAL; |
973 | break; |
974 | } |
975 | |
976 | /* |
977 | * Stereo-capable mixer ports: if we get a single-channel |
978 | * gain value passed in, then we duplicate it to both left |
979 | * and right channels. |
980 | */ |
981 | switch (cp->un.value.num_channels) { |
982 | case 1: |
983 | lgain = rgain = ESO_GAIN_TO_4BIT( |
984 | cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); |
985 | break; |
986 | case 2: |
987 | lgain = ESO_GAIN_TO_4BIT( |
988 | cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); |
989 | rgain = ESO_GAIN_TO_4BIT( |
990 | cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); |
991 | break; |
992 | default: |
993 | error = EINVAL; |
994 | break; |
995 | } |
996 | |
997 | if (!error) { |
998 | sc->sc_gain[cp->dev][ESO_LEFT] = lgain; |
999 | sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; |
1000 | eso_set_gain(sc, cp->dev); |
1001 | } |
1002 | break; |
1003 | |
1004 | case ESO_MASTER_VOL: |
1005 | if (cp->type != AUDIO_MIXER_VALUE) { |
1006 | error = EINVAL; |
1007 | break; |
1008 | } |
1009 | |
1010 | /* Like above, but a precision of 6 bits. */ |
1011 | switch (cp->un.value.num_channels) { |
1012 | case 1: |
1013 | lgain = rgain = ESO_GAIN_TO_6BIT( |
1014 | cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); |
1015 | break; |
1016 | case 2: |
1017 | lgain = ESO_GAIN_TO_6BIT( |
1018 | cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); |
1019 | rgain = ESO_GAIN_TO_6BIT( |
1020 | cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); |
1021 | break; |
1022 | default: |
1023 | error = EINVAL; |
1024 | break; |
1025 | } |
1026 | |
1027 | if (!error) { |
1028 | sc->sc_gain[cp->dev][ESO_LEFT] = lgain; |
1029 | sc->sc_gain[cp->dev][ESO_RIGHT] = rgain; |
1030 | eso_set_gain(sc, cp->dev); |
1031 | } |
1032 | break; |
1033 | |
1034 | case ESO_SPATIALIZER: |
1035 | if (cp->type != AUDIO_MIXER_VALUE || |
1036 | cp->un.value.num_channels != 1) { |
1037 | error = EINVAL; |
1038 | break; |
1039 | } |
1040 | |
1041 | sc->sc_gain[cp->dev][ESO_LEFT] = |
1042 | sc->sc_gain[cp->dev][ESO_RIGHT] = |
1043 | ESO_GAIN_TO_6BIT( |
1044 | cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); |
1045 | eso_set_gain(sc, cp->dev); |
1046 | break; |
1047 | |
1048 | case ESO_MONO_PLAY_VOL: |
1049 | case ESO_MONO_REC_VOL: |
1050 | if (cp->type != AUDIO_MIXER_VALUE || |
1051 | cp->un.value.num_channels != 1) { |
1052 | error = EINVAL; |
1053 | break; |
1054 | } |
1055 | |
1056 | sc->sc_gain[cp->dev][ESO_LEFT] = |
1057 | sc->sc_gain[cp->dev][ESO_RIGHT] = |
1058 | ESO_GAIN_TO_4BIT( |
1059 | cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); |
1060 | eso_set_gain(sc, cp->dev); |
1061 | break; |
1062 | |
1063 | case ESO_PCSPEAKER_VOL: |
1064 | if (cp->type != AUDIO_MIXER_VALUE || |
1065 | cp->un.value.num_channels != 1) { |
1066 | error = EINVAL; |
1067 | break; |
1068 | } |
1069 | |
1070 | sc->sc_gain[cp->dev][ESO_LEFT] = |
1071 | sc->sc_gain[cp->dev][ESO_RIGHT] = |
1072 | ESO_GAIN_TO_3BIT( |
1073 | cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); |
1074 | eso_set_gain(sc, cp->dev); |
1075 | break; |
1076 | |
1077 | case ESO_SPATIALIZER_ENABLE: |
1078 | if (cp->type != AUDIO_MIXER_ENUM) { |
1079 | error = EINVAL; |
1080 | break; |
1081 | } |
1082 | |
1083 | sc->sc_spatializer = (cp->un.ord != 0); |
1084 | |
1085 | tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT); |
1086 | if (sc->sc_spatializer) |
1087 | tmp |= ESO_MIXREG_SPAT_ENB; |
1088 | else |
1089 | tmp &= ~ESO_MIXREG_SPAT_ENB; |
1090 | eso_write_mixreg(sc, ESO_MIXREG_SPAT, |
1091 | tmp | ESO_MIXREG_SPAT_RSTREL); |
1092 | break; |
1093 | |
1094 | case ESO_MASTER_MUTE: |
1095 | if (cp->type != AUDIO_MIXER_ENUM) { |
1096 | error = EINVAL; |
1097 | break; |
1098 | } |
1099 | |
1100 | sc->sc_mvmute = (cp->un.ord != 0); |
1101 | |
1102 | if (sc->sc_mvmute) { |
1103 | eso_write_mixreg(sc, ESO_MIXREG_LMVM, |
1104 | eso_read_mixreg(sc, ESO_MIXREG_LMVM) | |
1105 | ESO_MIXREG_LMVM_MUTE); |
1106 | eso_write_mixreg(sc, ESO_MIXREG_RMVM, |
1107 | eso_read_mixreg(sc, ESO_MIXREG_RMVM) | |
1108 | ESO_MIXREG_RMVM_MUTE); |
1109 | } else { |
1110 | eso_write_mixreg(sc, ESO_MIXREG_LMVM, |
1111 | eso_read_mixreg(sc, ESO_MIXREG_LMVM) & |
1112 | ~ESO_MIXREG_LMVM_MUTE); |
1113 | eso_write_mixreg(sc, ESO_MIXREG_RMVM, |
1114 | eso_read_mixreg(sc, ESO_MIXREG_RMVM) & |
1115 | ~ESO_MIXREG_RMVM_MUTE); |
1116 | } |
1117 | break; |
1118 | |
1119 | case ESO_MONOOUT_SOURCE: |
1120 | if (cp->type != AUDIO_MIXER_ENUM) { |
1121 | error = EINVAL; |
1122 | break; |
1123 | } |
1124 | |
1125 | error = eso_set_monooutsrc(sc, cp->un.ord); |
1126 | break; |
1127 | |
1128 | case ESO_MONOIN_BYPASS: |
1129 | if (cp->type != AUDIO_MIXER_ENUM) { |
1130 | error = EINVAL; |
1131 | break; |
1132 | } |
1133 | |
1134 | error = (eso_set_monoinbypass(sc, cp->un.ord)); |
1135 | break; |
1136 | |
1137 | case ESO_RECORD_MONITOR: |
1138 | if (cp->type != AUDIO_MIXER_ENUM) { |
1139 | error = EINVAL; |
1140 | break; |
1141 | } |
1142 | |
1143 | sc->sc_recmon = (cp->un.ord != 0); |
1144 | |
1145 | tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); |
1146 | if (sc->sc_recmon) |
1147 | tmp |= ESO_CTLREG_ACTL_RECMON; |
1148 | else |
1149 | tmp &= ~ESO_CTLREG_ACTL_RECMON; |
1150 | eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp); |
1151 | break; |
1152 | |
1153 | case ESO_RECORD_SOURCE: |
1154 | if (cp->type != AUDIO_MIXER_ENUM) { |
1155 | error = EINVAL; |
1156 | break; |
1157 | } |
1158 | |
1159 | error = eso_set_recsrc(sc, cp->un.ord); |
1160 | break; |
1161 | |
1162 | case ESO_MIC_PREAMP: |
1163 | if (cp->type != AUDIO_MIXER_ENUM) { |
1164 | error = EINVAL; |
1165 | break; |
1166 | } |
1167 | |
1168 | error = eso_set_preamp(sc, cp->un.ord); |
1169 | break; |
1170 | |
1171 | default: |
1172 | error = EINVAL; |
1173 | break; |
1174 | } |
1175 | |
1176 | mutex_spin_exit(&sc->sc_intr_lock); |
1177 | return error; |
1178 | } |
1179 | |
1180 | static int |
1181 | eso_get_port(void *hdl, mixer_ctrl_t *cp) |
1182 | { |
1183 | struct eso_softc *sc; |
1184 | |
1185 | sc = hdl; |
1186 | |
1187 | mutex_spin_enter(&sc->sc_intr_lock); |
1188 | |
1189 | switch (cp->dev) { |
1190 | case ESO_MASTER_VOL: |
1191 | /* Reload from mixer after hardware volume control use. */ |
1192 | if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0) |
1193 | eso_reload_master_vol(sc); |
1194 | /* FALLTHROUGH */ |
1195 | case ESO_DAC_PLAY_VOL: |
1196 | case ESO_MIC_PLAY_VOL: |
1197 | case ESO_LINE_PLAY_VOL: |
1198 | case ESO_SYNTH_PLAY_VOL: |
1199 | case ESO_CD_PLAY_VOL: |
1200 | case ESO_AUXB_PLAY_VOL: |
1201 | case ESO_RECORD_VOL: |
1202 | case ESO_DAC_REC_VOL: |
1203 | case ESO_MIC_REC_VOL: |
1204 | case ESO_LINE_REC_VOL: |
1205 | case ESO_SYNTH_REC_VOL: |
1206 | case ESO_CD_REC_VOL: |
1207 | case ESO_AUXB_REC_VOL: |
1208 | /* |
1209 | * Stereo-capable ports: if a single-channel query is made, |
1210 | * just return the left channel's value (since single-channel |
1211 | * settings themselves are applied to both channels). |
1212 | */ |
1213 | switch (cp->un.value.num_channels) { |
1214 | case 1: |
1215 | cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = |
1216 | sc->sc_gain[cp->dev][ESO_LEFT]; |
1217 | break; |
1218 | case 2: |
1219 | cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = |
1220 | sc->sc_gain[cp->dev][ESO_LEFT]; |
1221 | cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = |
1222 | sc->sc_gain[cp->dev][ESO_RIGHT]; |
1223 | break; |
1224 | default: |
1225 | break; |
1226 | } |
1227 | break; |
1228 | |
1229 | case ESO_MONO_PLAY_VOL: |
1230 | case ESO_PCSPEAKER_VOL: |
1231 | case ESO_MONO_REC_VOL: |
1232 | case ESO_SPATIALIZER: |
1233 | if (cp->un.value.num_channels != 1) { |
1234 | break; |
1235 | } |
1236 | cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = |
1237 | sc->sc_gain[cp->dev][ESO_LEFT]; |
1238 | break; |
1239 | |
1240 | case ESO_RECORD_MONITOR: |
1241 | cp->un.ord = sc->sc_recmon; |
1242 | break; |
1243 | |
1244 | case ESO_RECORD_SOURCE: |
1245 | cp->un.ord = sc->sc_recsrc; |
1246 | break; |
1247 | |
1248 | case ESO_MONOOUT_SOURCE: |
1249 | cp->un.ord = sc->sc_monooutsrc; |
1250 | break; |
1251 | |
1252 | case ESO_MONOIN_BYPASS: |
1253 | cp->un.ord = sc->sc_monoinbypass; |
1254 | break; |
1255 | |
1256 | case ESO_SPATIALIZER_ENABLE: |
1257 | cp->un.ord = sc->sc_spatializer; |
1258 | break; |
1259 | |
1260 | case ESO_MIC_PREAMP: |
1261 | cp->un.ord = sc->sc_preamp; |
1262 | break; |
1263 | |
1264 | case ESO_MASTER_MUTE: |
1265 | /* Reload from mixer after hardware volume control use. */ |
1266 | if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0) |
1267 | eso_reload_master_vol(sc); |
1268 | cp->un.ord = sc->sc_mvmute; |
1269 | break; |
1270 | |
1271 | default: |
1272 | break; |
1273 | } |
1274 | |
1275 | mutex_spin_exit(&sc->sc_intr_lock); |
1276 | return 0; |
1277 | } |
1278 | |
1279 | static int |
1280 | eso_query_devinfo(void *hdl, mixer_devinfo_t *dip) |
1281 | { |
1282 | |
1283 | switch (dip->index) { |
1284 | case ESO_DAC_PLAY_VOL: |
1285 | dip->mixer_class = ESO_INPUT_CLASS; |
1286 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1287 | strcpy(dip->label.name, AudioNdac); |
1288 | dip->type = AUDIO_MIXER_VALUE; |
1289 | dip->un.v.num_channels = 2; |
1290 | strcpy(dip->un.v.units.name, AudioNvolume); |
1291 | break; |
1292 | case ESO_MIC_PLAY_VOL: |
1293 | dip->mixer_class = ESO_INPUT_CLASS; |
1294 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1295 | strcpy(dip->label.name, AudioNmicrophone); |
1296 | dip->type = AUDIO_MIXER_VALUE; |
1297 | dip->un.v.num_channels = 2; |
1298 | strcpy(dip->un.v.units.name, AudioNvolume); |
1299 | break; |
1300 | case ESO_LINE_PLAY_VOL: |
1301 | dip->mixer_class = ESO_INPUT_CLASS; |
1302 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1303 | strcpy(dip->label.name, AudioNline); |
1304 | dip->type = AUDIO_MIXER_VALUE; |
1305 | dip->un.v.num_channels = 2; |
1306 | strcpy(dip->un.v.units.name, AudioNvolume); |
1307 | break; |
1308 | case ESO_SYNTH_PLAY_VOL: |
1309 | dip->mixer_class = ESO_INPUT_CLASS; |
1310 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1311 | strcpy(dip->label.name, AudioNfmsynth); |
1312 | dip->type = AUDIO_MIXER_VALUE; |
1313 | dip->un.v.num_channels = 2; |
1314 | strcpy(dip->un.v.units.name, AudioNvolume); |
1315 | break; |
1316 | case ESO_MONO_PLAY_VOL: |
1317 | dip->mixer_class = ESO_INPUT_CLASS; |
1318 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1319 | strcpy(dip->label.name, "mono_in" ); |
1320 | dip->type = AUDIO_MIXER_VALUE; |
1321 | dip->un.v.num_channels = 1; |
1322 | strcpy(dip->un.v.units.name, AudioNvolume); |
1323 | break; |
1324 | case ESO_CD_PLAY_VOL: |
1325 | dip->mixer_class = ESO_INPUT_CLASS; |
1326 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1327 | strcpy(dip->label.name, AudioNcd); |
1328 | dip->type = AUDIO_MIXER_VALUE; |
1329 | dip->un.v.num_channels = 2; |
1330 | strcpy(dip->un.v.units.name, AudioNvolume); |
1331 | break; |
1332 | case ESO_AUXB_PLAY_VOL: |
1333 | dip->mixer_class = ESO_INPUT_CLASS; |
1334 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1335 | strcpy(dip->label.name, "auxb" ); |
1336 | dip->type = AUDIO_MIXER_VALUE; |
1337 | dip->un.v.num_channels = 2; |
1338 | strcpy(dip->un.v.units.name, AudioNvolume); |
1339 | break; |
1340 | |
1341 | case ESO_MIC_PREAMP: |
1342 | dip->mixer_class = ESO_MICROPHONE_CLASS; |
1343 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1344 | strcpy(dip->label.name, AudioNpreamp); |
1345 | dip->type = AUDIO_MIXER_ENUM; |
1346 | dip->un.e.num_mem = 2; |
1347 | strcpy(dip->un.e.member[0].label.name, AudioNoff); |
1348 | dip->un.e.member[0].ord = 0; |
1349 | strcpy(dip->un.e.member[1].label.name, AudioNon); |
1350 | dip->un.e.member[1].ord = 1; |
1351 | break; |
1352 | case ESO_MICROPHONE_CLASS: |
1353 | dip->mixer_class = ESO_MICROPHONE_CLASS; |
1354 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1355 | strcpy(dip->label.name, AudioNmicrophone); |
1356 | dip->type = AUDIO_MIXER_CLASS; |
1357 | break; |
1358 | |
1359 | case ESO_INPUT_CLASS: |
1360 | dip->mixer_class = ESO_INPUT_CLASS; |
1361 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1362 | strcpy(dip->label.name, AudioCinputs); |
1363 | dip->type = AUDIO_MIXER_CLASS; |
1364 | break; |
1365 | |
1366 | case ESO_MASTER_VOL: |
1367 | dip->mixer_class = ESO_OUTPUT_CLASS; |
1368 | dip->prev = AUDIO_MIXER_LAST; |
1369 | dip->next = ESO_MASTER_MUTE; |
1370 | strcpy(dip->label.name, AudioNmaster); |
1371 | dip->type = AUDIO_MIXER_VALUE; |
1372 | dip->un.v.num_channels = 2; |
1373 | strcpy(dip->un.v.units.name, AudioNvolume); |
1374 | break; |
1375 | case ESO_MASTER_MUTE: |
1376 | dip->mixer_class = ESO_OUTPUT_CLASS; |
1377 | dip->prev = ESO_MASTER_VOL; |
1378 | dip->next = AUDIO_MIXER_LAST; |
1379 | strcpy(dip->label.name, AudioNmute); |
1380 | dip->type = AUDIO_MIXER_ENUM; |
1381 | dip->un.e.num_mem = 2; |
1382 | strcpy(dip->un.e.member[0].label.name, AudioNoff); |
1383 | dip->un.e.member[0].ord = 0; |
1384 | strcpy(dip->un.e.member[1].label.name, AudioNon); |
1385 | dip->un.e.member[1].ord = 1; |
1386 | break; |
1387 | |
1388 | case ESO_PCSPEAKER_VOL: |
1389 | dip->mixer_class = ESO_OUTPUT_CLASS; |
1390 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1391 | strcpy(dip->label.name, "pc_speaker" ); |
1392 | dip->type = AUDIO_MIXER_VALUE; |
1393 | dip->un.v.num_channels = 1; |
1394 | strcpy(dip->un.v.units.name, AudioNvolume); |
1395 | break; |
1396 | case ESO_MONOOUT_SOURCE: |
1397 | dip->mixer_class = ESO_OUTPUT_CLASS; |
1398 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1399 | strcpy(dip->label.name, "mono_out" ); |
1400 | dip->type = AUDIO_MIXER_ENUM; |
1401 | dip->un.e.num_mem = 3; |
1402 | strcpy(dip->un.e.member[0].label.name, AudioNmute); |
1403 | dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE; |
1404 | strcpy(dip->un.e.member[1].label.name, AudioNdac); |
1405 | dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R; |
1406 | strcpy(dip->un.e.member[2].label.name, AudioNmixerout); |
1407 | dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC; |
1408 | break; |
1409 | |
1410 | case ESO_MONOIN_BYPASS: |
1411 | dip->mixer_class = ESO_MONOIN_CLASS; |
1412 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1413 | strcpy(dip->label.name, "bypass" ); |
1414 | dip->type = AUDIO_MIXER_ENUM; |
1415 | dip->un.e.num_mem = 2; |
1416 | strcpy(dip->un.e.member[0].label.name, AudioNoff); |
1417 | dip->un.e.member[0].ord = 0; |
1418 | strcpy(dip->un.e.member[1].label.name, AudioNon); |
1419 | dip->un.e.member[1].ord = 1; |
1420 | break; |
1421 | case ESO_MONOIN_CLASS: |
1422 | dip->mixer_class = ESO_MONOIN_CLASS; |
1423 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1424 | strcpy(dip->label.name, "mono_in" ); |
1425 | dip->type = AUDIO_MIXER_CLASS; |
1426 | break; |
1427 | |
1428 | case ESO_SPATIALIZER: |
1429 | dip->mixer_class = ESO_OUTPUT_CLASS; |
1430 | dip->prev = AUDIO_MIXER_LAST; |
1431 | dip->next = ESO_SPATIALIZER_ENABLE; |
1432 | strcpy(dip->label.name, AudioNspatial); |
1433 | dip->type = AUDIO_MIXER_VALUE; |
1434 | dip->un.v.num_channels = 1; |
1435 | strcpy(dip->un.v.units.name, "level" ); |
1436 | break; |
1437 | case ESO_SPATIALIZER_ENABLE: |
1438 | dip->mixer_class = ESO_OUTPUT_CLASS; |
1439 | dip->prev = ESO_SPATIALIZER; |
1440 | dip->next = AUDIO_MIXER_LAST; |
1441 | strcpy(dip->label.name, "enable" ); |
1442 | dip->type = AUDIO_MIXER_ENUM; |
1443 | dip->un.e.num_mem = 2; |
1444 | strcpy(dip->un.e.member[0].label.name, AudioNoff); |
1445 | dip->un.e.member[0].ord = 0; |
1446 | strcpy(dip->un.e.member[1].label.name, AudioNon); |
1447 | dip->un.e.member[1].ord = 1; |
1448 | break; |
1449 | |
1450 | case ESO_OUTPUT_CLASS: |
1451 | dip->mixer_class = ESO_OUTPUT_CLASS; |
1452 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1453 | strcpy(dip->label.name, AudioCoutputs); |
1454 | dip->type = AUDIO_MIXER_CLASS; |
1455 | break; |
1456 | |
1457 | case ESO_RECORD_MONITOR: |
1458 | dip->mixer_class = ESO_MONITOR_CLASS; |
1459 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1460 | strcpy(dip->label.name, AudioNmute); |
1461 | dip->type = AUDIO_MIXER_ENUM; |
1462 | dip->un.e.num_mem = 2; |
1463 | strcpy(dip->un.e.member[0].label.name, AudioNoff); |
1464 | dip->un.e.member[0].ord = 0; |
1465 | strcpy(dip->un.e.member[1].label.name, AudioNon); |
1466 | dip->un.e.member[1].ord = 1; |
1467 | break; |
1468 | case ESO_MONITOR_CLASS: |
1469 | dip->mixer_class = ESO_MONITOR_CLASS; |
1470 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1471 | strcpy(dip->label.name, AudioCmonitor); |
1472 | dip->type = AUDIO_MIXER_CLASS; |
1473 | break; |
1474 | |
1475 | case ESO_RECORD_VOL: |
1476 | dip->mixer_class = ESO_RECORD_CLASS; |
1477 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1478 | strcpy(dip->label.name, AudioNrecord); |
1479 | dip->type = AUDIO_MIXER_VALUE; |
1480 | strcpy(dip->un.v.units.name, AudioNvolume); |
1481 | break; |
1482 | case ESO_RECORD_SOURCE: |
1483 | dip->mixer_class = ESO_RECORD_CLASS; |
1484 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1485 | strcpy(dip->label.name, AudioNsource); |
1486 | dip->type = AUDIO_MIXER_ENUM; |
1487 | dip->un.e.num_mem = 4; |
1488 | strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); |
1489 | dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC; |
1490 | strcpy(dip->un.e.member[1].label.name, AudioNline); |
1491 | dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE; |
1492 | strcpy(dip->un.e.member[2].label.name, AudioNcd); |
1493 | dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD; |
1494 | strcpy(dip->un.e.member[3].label.name, AudioNmixerout); |
1495 | dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER; |
1496 | break; |
1497 | case ESO_DAC_REC_VOL: |
1498 | dip->mixer_class = ESO_RECORD_CLASS; |
1499 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1500 | strcpy(dip->label.name, AudioNdac); |
1501 | dip->type = AUDIO_MIXER_VALUE; |
1502 | dip->un.v.num_channels = 2; |
1503 | strcpy(dip->un.v.units.name, AudioNvolume); |
1504 | break; |
1505 | case ESO_MIC_REC_VOL: |
1506 | dip->mixer_class = ESO_RECORD_CLASS; |
1507 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1508 | strcpy(dip->label.name, AudioNmicrophone); |
1509 | dip->type = AUDIO_MIXER_VALUE; |
1510 | dip->un.v.num_channels = 2; |
1511 | strcpy(dip->un.v.units.name, AudioNvolume); |
1512 | break; |
1513 | case ESO_LINE_REC_VOL: |
1514 | dip->mixer_class = ESO_RECORD_CLASS; |
1515 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1516 | strcpy(dip->label.name, AudioNline); |
1517 | dip->type = AUDIO_MIXER_VALUE; |
1518 | dip->un.v.num_channels = 2; |
1519 | strcpy(dip->un.v.units.name, AudioNvolume); |
1520 | break; |
1521 | case ESO_SYNTH_REC_VOL: |
1522 | dip->mixer_class = ESO_RECORD_CLASS; |
1523 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1524 | strcpy(dip->label.name, AudioNfmsynth); |
1525 | dip->type = AUDIO_MIXER_VALUE; |
1526 | dip->un.v.num_channels = 2; |
1527 | strcpy(dip->un.v.units.name, AudioNvolume); |
1528 | break; |
1529 | case ESO_MONO_REC_VOL: |
1530 | dip->mixer_class = ESO_RECORD_CLASS; |
1531 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1532 | strcpy(dip->label.name, "mono_in" ); |
1533 | dip->type = AUDIO_MIXER_VALUE; |
1534 | dip->un.v.num_channels = 1; /* No lies */ |
1535 | strcpy(dip->un.v.units.name, AudioNvolume); |
1536 | break; |
1537 | case ESO_CD_REC_VOL: |
1538 | dip->mixer_class = ESO_RECORD_CLASS; |
1539 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1540 | strcpy(dip->label.name, AudioNcd); |
1541 | dip->type = AUDIO_MIXER_VALUE; |
1542 | dip->un.v.num_channels = 2; |
1543 | strcpy(dip->un.v.units.name, AudioNvolume); |
1544 | break; |
1545 | case ESO_AUXB_REC_VOL: |
1546 | dip->mixer_class = ESO_RECORD_CLASS; |
1547 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1548 | strcpy(dip->label.name, "auxb" ); |
1549 | dip->type = AUDIO_MIXER_VALUE; |
1550 | dip->un.v.num_channels = 2; |
1551 | strcpy(dip->un.v.units.name, AudioNvolume); |
1552 | break; |
1553 | case ESO_RECORD_CLASS: |
1554 | dip->mixer_class = ESO_RECORD_CLASS; |
1555 | dip->next = dip->prev = AUDIO_MIXER_LAST; |
1556 | strcpy(dip->label.name, AudioCrecord); |
1557 | dip->type = AUDIO_MIXER_CLASS; |
1558 | break; |
1559 | |
1560 | default: |
1561 | return ENXIO; |
1562 | } |
1563 | |
1564 | return 0; |
1565 | } |
1566 | |
1567 | static int |
1568 | eso_allocmem(struct eso_softc *sc, size_t size, size_t align, |
1569 | size_t boundary, int direction, struct eso_dma *ed) |
1570 | { |
1571 | int error; |
1572 | |
1573 | ed->ed_size = size; |
1574 | |
1575 | error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary, |
1576 | ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]), |
1577 | &ed->ed_nsegs, BUS_DMA_WAITOK); |
1578 | if (error) |
1579 | goto out; |
1580 | |
1581 | error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, |
1582 | ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT); |
1583 | if (error) |
1584 | goto free; |
1585 | |
1586 | error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0, |
1587 | BUS_DMA_WAITOK, &ed->ed_map); |
1588 | if (error) |
1589 | goto unmap; |
1590 | |
1591 | error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva, |
1592 | ed->ed_size, NULL, BUS_DMA_WAITOK | |
1593 | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); |
1594 | if (error) |
1595 | goto destroy; |
1596 | |
1597 | return 0; |
1598 | |
1599 | destroy: |
1600 | bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); |
1601 | unmap: |
1602 | bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size); |
1603 | free: |
1604 | bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); |
1605 | out: |
1606 | return error; |
1607 | } |
1608 | |
1609 | static void |
1610 | eso_freemem(struct eso_dma *ed) |
1611 | { |
1612 | |
1613 | bus_dmamap_unload(ed->ed_dmat, ed->ed_map); |
1614 | bus_dmamap_destroy(ed->ed_dmat, ed->ed_map); |
1615 | bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size); |
1616 | bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs); |
1617 | } |
1618 | |
1619 | static struct eso_dma * |
1620 | eso_kva2dma(const struct eso_softc *sc, const void *kva) |
1621 | { |
1622 | struct eso_dma *p; |
1623 | |
1624 | SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) { |
1625 | if (KVADDR(p) == kva) |
1626 | return p; |
1627 | } |
1628 | |
1629 | panic("%s: kva2dma: bad kva: %p" , device_xname(sc->sc_dev), kva); |
1630 | /* NOTREACHED */ |
1631 | } |
1632 | |
1633 | static void * |
1634 | eso_allocm(void *hdl, int direction, size_t size) |
1635 | { |
1636 | struct eso_softc *sc; |
1637 | struct eso_dma *ed; |
1638 | size_t boundary; |
1639 | int error; |
1640 | |
1641 | sc = hdl; |
1642 | if ((ed = kmem_alloc(sizeof (*ed), KM_SLEEP)) == NULL) |
1643 | return NULL; |
1644 | |
1645 | /* |
1646 | * Apparently the Audio 1 DMA controller's current address |
1647 | * register can't roll over a 64K address boundary, so we have to |
1648 | * take care of that ourselves. Similarly, the Audio 2 DMA |
1649 | * controller needs a 1M address boundary. |
1650 | */ |
1651 | if (direction == AUMODE_RECORD) |
1652 | boundary = 0x10000; |
1653 | else |
1654 | boundary = 0x100000; |
1655 | |
1656 | /* |
1657 | * XXX Work around allocation problems for Audio 1, which |
1658 | * XXX implements the 24 low address bits only, with |
1659 | * XXX machine-specific DMA tag use. |
1660 | */ |
1661 | #ifdef alpha |
1662 | /* |
1663 | * XXX Force allocation through the (ISA) SGMAP. |
1664 | */ |
1665 | if (direction == AUMODE_RECORD) |
1666 | ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA); |
1667 | else |
1668 | #elif defined(amd64) || defined(i386) |
1669 | /* |
1670 | * XXX Force allocation through the ISA DMA tag. |
1671 | */ |
1672 | if (direction == AUMODE_RECORD) |
1673 | ed->ed_dmat = &isa_bus_dma_tag; |
1674 | else |
1675 | #endif |
1676 | ed->ed_dmat = sc->sc_dmat; |
1677 | |
1678 | error = eso_allocmem(sc, size, 32, boundary, direction, ed); |
1679 | if (error) { |
1680 | kmem_free(ed, sizeof(*ed)); |
1681 | return NULL; |
1682 | } |
1683 | SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist); |
1684 | |
1685 | return KVADDR(ed); |
1686 | } |
1687 | |
1688 | static void |
1689 | eso_freem(void *hdl, void *addr, size_t size) |
1690 | { |
1691 | struct eso_softc *sc; |
1692 | struct eso_dma *p; |
1693 | |
1694 | sc = hdl; |
1695 | p = eso_kva2dma(sc, addr); |
1696 | |
1697 | SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist); |
1698 | eso_freemem(p); |
1699 | kmem_free(p, sizeof(*p)); |
1700 | } |
1701 | |
1702 | static size_t |
1703 | eso_round_buffersize(void *hdl, int direction, size_t bufsize) |
1704 | { |
1705 | size_t maxsize; |
1706 | |
1707 | /* |
1708 | * The playback DMA buffer size on the Solo-1 is limited to 0xfff0 |
1709 | * bytes. This is because IO_A2DMAC is a two byte value |
1710 | * indicating the literal byte count, and the 4 least significant |
1711 | * bits are read-only. Zero is not used as a special case for |
1712 | * 0x10000. |
1713 | * |
1714 | * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can |
1715 | * be represented. |
1716 | */ |
1717 | maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000; |
1718 | |
1719 | if (bufsize > maxsize) |
1720 | bufsize = maxsize; |
1721 | |
1722 | return bufsize; |
1723 | } |
1724 | |
1725 | static paddr_t |
1726 | eso_mappage(void *hdl, void *addr, off_t offs, int prot) |
1727 | { |
1728 | struct eso_softc *sc; |
1729 | struct eso_dma *ed; |
1730 | |
1731 | sc = hdl; |
1732 | if (offs < 0) |
1733 | return -1; |
1734 | ed = eso_kva2dma(sc, addr); |
1735 | |
1736 | return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs, |
1737 | offs, prot, BUS_DMA_WAITOK); |
1738 | } |
1739 | |
1740 | /* ARGSUSED */ |
1741 | static int |
1742 | eso_get_props(void *hdl) |
1743 | { |
1744 | |
1745 | return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | |
1746 | AUDIO_PROP_FULLDUPLEX; |
1747 | } |
1748 | |
1749 | static int |
1750 | eso_trigger_output(void *hdl, void *start, void *end, int blksize, |
1751 | void (*intr)(void *), void *arg, const audio_params_t *param) |
1752 | { |
1753 | struct eso_softc *sc; |
1754 | struct eso_dma *ed; |
1755 | uint8_t a2c1; |
1756 | |
1757 | sc = hdl; |
1758 | DPRINTF(( |
1759 | "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n" , |
1760 | device_xname(sc->sc_dev), start, end, blksize, intr, arg)); |
1761 | DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n" , |
1762 | device_xname(sc->sc_dev), param->sample_rate, param->encoding, |
1763 | param->precision, param->channels)); |
1764 | |
1765 | /* Find DMA buffer. */ |
1766 | ed = eso_kva2dma(sc, start); |
1767 | DPRINTF(("%s: dmaaddr %lx\n" , |
1768 | device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed))); |
1769 | |
1770 | sc->sc_pintr = intr; |
1771 | sc->sc_parg = arg; |
1772 | |
1773 | /* Compute drain timeout. */ |
1774 | sc->sc_pdrain = (blksize * NBBY * hz) / |
1775 | (param->sample_rate * param->channels * |
1776 | param->precision) + 2; /* slop */ |
1777 | |
1778 | /* DMA transfer count (in `words'!) reload using 2's complement. */ |
1779 | blksize = -(blksize >> 1); |
1780 | eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff); |
1781 | eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8); |
1782 | |
1783 | /* Update DAC to reflect DMA count and audio parameters. */ |
1784 | /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */ |
1785 | if (param->precision == 16) |
1786 | sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT; |
1787 | else |
1788 | sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT; |
1789 | if (param->channels == 2) |
1790 | sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO; |
1791 | else |
1792 | sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO; |
1793 | if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || |
1794 | param->encoding == AUDIO_ENCODING_SLINEAR_LE) |
1795 | sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED; |
1796 | else |
1797 | sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED; |
1798 | /* Unmask IRQ. */ |
1799 | sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM; |
1800 | eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2); |
1801 | |
1802 | /* Set up DMA controller. */ |
1803 | bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, |
1804 | DMAADDR(ed)); |
1805 | bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC, |
1806 | (uint8_t *)end - (uint8_t *)start); |
1807 | bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, |
1808 | ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO); |
1809 | |
1810 | /* Start DMA. */ |
1811 | a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1); |
1812 | a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */ |
1813 | a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB | |
1814 | ESO_MIXREG_A2C1_AUTO; |
1815 | eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1); |
1816 | |
1817 | return 0; |
1818 | } |
1819 | |
1820 | static int |
1821 | eso_trigger_input(void *hdl, void *start, void *end, int blksize, |
1822 | void (*intr)(void *), void *arg, const audio_params_t *param) |
1823 | { |
1824 | struct eso_softc *sc; |
1825 | struct eso_dma *ed; |
1826 | uint8_t actl, a1c1; |
1827 | |
1828 | sc = hdl; |
1829 | DPRINTF(( |
1830 | "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n" , |
1831 | device_xname(sc->sc_dev), start, end, blksize, intr, arg)); |
1832 | DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n" , |
1833 | device_xname(sc->sc_dev), param->sample_rate, param->encoding, |
1834 | param->precision, param->channels)); |
1835 | |
1836 | /* |
1837 | * If we failed to configure the Audio 1 DMA controller, bail here |
1838 | * while retaining availability of the DAC direction (in Audio 2). |
1839 | */ |
1840 | if (!sc->sc_dmac_configured) |
1841 | return EIO; |
1842 | |
1843 | /* Find DMA buffer. */ |
1844 | ed = eso_kva2dma(sc, start); |
1845 | DPRINTF(("%s: dmaaddr %lx\n" , |
1846 | device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed))); |
1847 | |
1848 | sc->sc_rintr = intr; |
1849 | sc->sc_rarg = arg; |
1850 | |
1851 | /* Compute drain timeout. */ |
1852 | sc->sc_rdrain = (blksize * NBBY * hz) / |
1853 | (param->sample_rate * param->channels * |
1854 | param->precision) + 2; /* slop */ |
1855 | |
1856 | /* Set up ADC DMA converter parameters. */ |
1857 | actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL); |
1858 | if (param->channels == 2) { |
1859 | actl &= ~ESO_CTLREG_ACTL_MONO; |
1860 | actl |= ESO_CTLREG_ACTL_STEREO; |
1861 | } else { |
1862 | actl &= ~ESO_CTLREG_ACTL_STEREO; |
1863 | actl |= ESO_CTLREG_ACTL_MONO; |
1864 | } |
1865 | eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl); |
1866 | |
1867 | /* Set up Transfer Type: maybe move to attach time? */ |
1868 | eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4); |
1869 | |
1870 | /* DMA transfer count reload using 2's complement. */ |
1871 | blksize = -blksize; |
1872 | eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff); |
1873 | eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8); |
1874 | |
1875 | /* Set up and enable Audio 1 DMA FIFO. */ |
1876 | a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB; |
1877 | if (param->precision == 16) |
1878 | a1c1 |= ESO_CTLREG_A1C1_16BIT; |
1879 | if (param->channels == 2) |
1880 | a1c1 |= ESO_CTLREG_A1C1_STEREO; |
1881 | else |
1882 | a1c1 |= ESO_CTLREG_A1C1_MONO; |
1883 | if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || |
1884 | param->encoding == AUDIO_ENCODING_SLINEAR_LE) |
1885 | a1c1 |= ESO_CTLREG_A1C1_SIGNED; |
1886 | eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1); |
1887 | |
1888 | /* Set up ADC IRQ/DRQ parameters. */ |
1889 | eso_write_ctlreg(sc, ESO_CTLREG_LAIC, |
1890 | ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB); |
1891 | eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL, |
1892 | ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB); |
1893 | |
1894 | /* Set up and enable DMA controller. */ |
1895 | bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0); |
1896 | bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, |
1897 | ESO_DMAC_MASK_MASK); |
1898 | bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE, |
1899 | DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND); |
1900 | bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA, |
1901 | DMAADDR(ed)); |
1902 | bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC, |
1903 | (uint8_t *)end - (uint8_t *)start - 1); |
1904 | bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0); |
1905 | |
1906 | /* Start DMA. */ |
1907 | eso_write_ctlreg(sc, ESO_CTLREG_A1C2, |
1908 | ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ | |
1909 | ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC); |
1910 | |
1911 | return 0; |
1912 | } |
1913 | |
1914 | |
1915 | static void |
1916 | eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) |
1917 | { |
1918 | struct eso_softc *sc; |
1919 | |
1920 | sc = addr; |
1921 | *intr = &sc->sc_intr_lock; |
1922 | *thread = &sc->sc_lock; |
1923 | } |
1924 | |
1925 | /* |
1926 | * Mixer utility functions. |
1927 | */ |
1928 | static int |
1929 | eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc) |
1930 | { |
1931 | mixer_devinfo_t di; |
1932 | int i; |
1933 | |
1934 | KASSERT(mutex_owned(&sc->sc_intr_lock)); |
1935 | |
1936 | di.index = ESO_RECORD_SOURCE; |
1937 | if (eso_query_devinfo(sc, &di) != 0) |
1938 | panic("eso_set_recsrc: eso_query_devinfo failed" ); |
1939 | |
1940 | for (i = 0; i < di.un.e.num_mem; i++) { |
1941 | if (recsrc == di.un.e.member[i].ord) { |
1942 | eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc); |
1943 | sc->sc_recsrc = recsrc; |
1944 | return 0; |
1945 | } |
1946 | } |
1947 | |
1948 | return EINVAL; |
1949 | } |
1950 | |
1951 | static int |
1952 | eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc) |
1953 | { |
1954 | mixer_devinfo_t di; |
1955 | int i; |
1956 | uint8_t mpm; |
1957 | |
1958 | KASSERT(mutex_owned(&sc->sc_intr_lock)); |
1959 | |
1960 | di.index = ESO_MONOOUT_SOURCE; |
1961 | if (eso_query_devinfo(sc, &di) != 0) |
1962 | panic("eso_set_monooutsrc: eso_query_devinfo failed" ); |
1963 | |
1964 | for (i = 0; i < di.un.e.num_mem; i++) { |
1965 | if (monooutsrc == di.un.e.member[i].ord) { |
1966 | mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); |
1967 | mpm &= ~ESO_MIXREG_MPM_MOMASK; |
1968 | mpm |= monooutsrc; |
1969 | eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); |
1970 | sc->sc_monooutsrc = monooutsrc; |
1971 | return 0; |
1972 | } |
1973 | } |
1974 | |
1975 | return EINVAL; |
1976 | } |
1977 | |
1978 | static int |
1979 | eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass) |
1980 | { |
1981 | mixer_devinfo_t di; |
1982 | int i; |
1983 | uint8_t mpm; |
1984 | |
1985 | KASSERT(mutex_owned(&sc->sc_intr_lock)); |
1986 | |
1987 | di.index = ESO_MONOIN_BYPASS; |
1988 | if (eso_query_devinfo(sc, &di) != 0) |
1989 | panic("eso_set_monoinbypass: eso_query_devinfo failed" ); |
1990 | |
1991 | for (i = 0; i < di.un.e.num_mem; i++) { |
1992 | if (monoinbypass == di.un.e.member[i].ord) { |
1993 | mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); |
1994 | mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0); |
1995 | mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0); |
1996 | eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); |
1997 | sc->sc_monoinbypass = monoinbypass; |
1998 | return 0; |
1999 | } |
2000 | } |
2001 | |
2002 | return EINVAL; |
2003 | } |
2004 | |
2005 | static int |
2006 | eso_set_preamp(struct eso_softc *sc, unsigned int preamp) |
2007 | { |
2008 | mixer_devinfo_t di; |
2009 | int i; |
2010 | uint8_t mpm; |
2011 | |
2012 | KASSERT(mutex_owned(&sc->sc_intr_lock)); |
2013 | |
2014 | di.index = ESO_MIC_PREAMP; |
2015 | if (eso_query_devinfo(sc, &di) != 0) |
2016 | panic("eso_set_preamp: eso_query_devinfo failed" ); |
2017 | |
2018 | for (i = 0; i < di.un.e.num_mem; i++) { |
2019 | if (preamp == di.un.e.member[i].ord) { |
2020 | mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM); |
2021 | mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0); |
2022 | mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0); |
2023 | eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm); |
2024 | sc->sc_preamp = preamp; |
2025 | return 0; |
2026 | } |
2027 | } |
2028 | |
2029 | return EINVAL; |
2030 | } |
2031 | |
2032 | /* |
2033 | * Reload Master Volume and Mute values in softc from mixer; used when |
2034 | * those have previously been invalidated by use of hardware volume controls. |
2035 | */ |
2036 | static void |
2037 | eso_reload_master_vol(struct eso_softc *sc) |
2038 | { |
2039 | uint8_t mv; |
2040 | |
2041 | KASSERT(mutex_owned(&sc->sc_intr_lock)); |
2042 | |
2043 | mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); |
2044 | sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = |
2045 | (mv & ~ESO_MIXREG_LMVM_MUTE) << 2; |
2046 | mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM); |
2047 | sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] = |
2048 | (mv & ~ESO_MIXREG_RMVM_MUTE) << 2; |
2049 | /* Currently both channels are muted simultaneously; either is OK. */ |
2050 | sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0; |
2051 | } |
2052 | |
2053 | static void |
2054 | eso_set_gain(struct eso_softc *sc, unsigned int port) |
2055 | { |
2056 | uint8_t mixreg, tmp; |
2057 | |
2058 | KASSERT(mutex_owned(&sc->sc_intr_lock)); |
2059 | |
2060 | switch (port) { |
2061 | case ESO_DAC_PLAY_VOL: |
2062 | mixreg = ESO_MIXREG_PVR_A2; |
2063 | break; |
2064 | case ESO_MIC_PLAY_VOL: |
2065 | mixreg = ESO_MIXREG_PVR_MIC; |
2066 | break; |
2067 | case ESO_LINE_PLAY_VOL: |
2068 | mixreg = ESO_MIXREG_PVR_LINE; |
2069 | break; |
2070 | case ESO_SYNTH_PLAY_VOL: |
2071 | mixreg = ESO_MIXREG_PVR_SYNTH; |
2072 | break; |
2073 | case ESO_CD_PLAY_VOL: |
2074 | mixreg = ESO_MIXREG_PVR_CD; |
2075 | break; |
2076 | case ESO_AUXB_PLAY_VOL: |
2077 | mixreg = ESO_MIXREG_PVR_AUXB; |
2078 | break; |
2079 | |
2080 | case ESO_DAC_REC_VOL: |
2081 | mixreg = ESO_MIXREG_RVR_A2; |
2082 | break; |
2083 | case ESO_MIC_REC_VOL: |
2084 | mixreg = ESO_MIXREG_RVR_MIC; |
2085 | break; |
2086 | case ESO_LINE_REC_VOL: |
2087 | mixreg = ESO_MIXREG_RVR_LINE; |
2088 | break; |
2089 | case ESO_SYNTH_REC_VOL: |
2090 | mixreg = ESO_MIXREG_RVR_SYNTH; |
2091 | break; |
2092 | case ESO_CD_REC_VOL: |
2093 | mixreg = ESO_MIXREG_RVR_CD; |
2094 | break; |
2095 | case ESO_AUXB_REC_VOL: |
2096 | mixreg = ESO_MIXREG_RVR_AUXB; |
2097 | break; |
2098 | case ESO_MONO_PLAY_VOL: |
2099 | mixreg = ESO_MIXREG_PVR_MONO; |
2100 | break; |
2101 | case ESO_MONO_REC_VOL: |
2102 | mixreg = ESO_MIXREG_RVR_MONO; |
2103 | break; |
2104 | |
2105 | case ESO_PCSPEAKER_VOL: |
2106 | /* Special case - only 3-bit, mono, and reserved bits. */ |
2107 | tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR); |
2108 | tmp &= ESO_MIXREG_PCSVR_RESV; |
2109 | /* Map bits 7:5 -> 2:0. */ |
2110 | tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5); |
2111 | eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp); |
2112 | return; |
2113 | |
2114 | case ESO_MASTER_VOL: |
2115 | /* Special case - separate regs, and 6-bit precision. */ |
2116 | /* Map bits 7:2 -> 5:0, reflect mute settings. */ |
2117 | eso_write_mixreg(sc, ESO_MIXREG_LMVM, |
2118 | (sc->sc_gain[port][ESO_LEFT] >> 2) | |
2119 | (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00)); |
2120 | eso_write_mixreg(sc, ESO_MIXREG_RMVM, |
2121 | (sc->sc_gain[port][ESO_RIGHT] >> 2) | |
2122 | (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00)); |
2123 | return; |
2124 | |
2125 | case ESO_SPATIALIZER: |
2126 | /* Special case - only `mono', and higher precision. */ |
2127 | eso_write_mixreg(sc, ESO_MIXREG_SPATLVL, |
2128 | sc->sc_gain[port][ESO_LEFT]); |
2129 | return; |
2130 | |
2131 | case ESO_RECORD_VOL: |
2132 | /* Very Special case, controller register. */ |
2133 | eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO( |
2134 | sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); |
2135 | return; |
2136 | |
2137 | default: |
2138 | #ifdef DIAGNOSTIC |
2139 | panic("eso_set_gain: bad port %u" , port); |
2140 | /* NOTREACHED */ |
2141 | #else |
2142 | return; |
2143 | #endif |
2144 | } |
2145 | |
2146 | eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO( |
2147 | sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT])); |
2148 | } |
2149 | |