1/* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
2/* $NetBSD: if_rum.c,v 1.56 2016/07/07 06:55:42 msaitoh Exp $ */
3
4/*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.56 2016/07/07 06:55:42 msaitoh Exp $");
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/module.h>
37#include <sys/conf.h>
38#include <sys/device.h>
39
40#include <sys/bus.h>
41#include <machine/endian.h>
42#include <sys/intr.h>
43
44#include <net/bpf.h>
45#include <net/if.h>
46#include <net/if_arp.h>
47#include <net/if_dl.h>
48#include <net/if_ether.h>
49#include <net/if_media.h>
50#include <net/if_types.h>
51
52#include <netinet/in.h>
53#include <netinet/in_systm.h>
54#include <netinet/in_var.h>
55#include <netinet/ip.h>
56
57#include <net80211/ieee80211_netbsd.h>
58#include <net80211/ieee80211_var.h>
59#include <net80211/ieee80211_amrr.h>
60#include <net80211/ieee80211_radiotap.h>
61
62#include <dev/firmload.h>
63
64#include <dev/usb/usb.h>
65#include <dev/usb/usbdi.h>
66#include <dev/usb/usbdi_util.h>
67#include <dev/usb/usbdevs.h>
68
69#include <dev/usb/if_rumreg.h>
70#include <dev/usb/if_rumvar.h>
71
72#ifdef RUM_DEBUG
73#define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
74#define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
75int rum_debug = 1;
76#else
77#define DPRINTF(x)
78#define DPRINTFN(n, x)
79#endif
80
81/* various supported device vendors/products */
82static const struct usb_devno rum_devs[] = {
83 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
84 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
85 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
86 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
87 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
88 { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
92 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
93 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
95 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
97 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
98 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
99 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
100 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
101 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
102 { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
103 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
104 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
105 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
106 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
107 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
108 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
109 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
110 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
111 { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
112 { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
113 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115 { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
116 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
117 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
118 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
119 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
120 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
121 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
122 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
123 { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
124 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
128 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
129 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
130 { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
131 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
132 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
133 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
134 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
135 { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
136 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
137 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
138};
139
140static int rum_attachhook(void *);
141static int rum_alloc_tx_list(struct rum_softc *);
142static void rum_free_tx_list(struct rum_softc *);
143static int rum_alloc_rx_list(struct rum_softc *);
144static void rum_free_rx_list(struct rum_softc *);
145static int rum_media_change(struct ifnet *);
146static void rum_next_scan(void *);
147static void rum_task(void *);
148static int rum_newstate(struct ieee80211com *,
149 enum ieee80211_state, int);
150static void rum_txeof(struct usbd_xfer *, void *,
151 usbd_status);
152static void rum_rxeof(struct usbd_xfer *, void *,
153 usbd_status);
154static uint8_t rum_rxrate(const struct rum_rx_desc *);
155static int rum_ack_rate(struct ieee80211com *, int);
156static uint16_t rum_txtime(int, int, uint32_t);
157static uint8_t rum_plcp_signal(int);
158static void rum_setup_tx_desc(struct rum_softc *,
159 struct rum_tx_desc *, uint32_t, uint16_t, int,
160 int);
161static int rum_tx_data(struct rum_softc *, struct mbuf *,
162 struct ieee80211_node *);
163static void rum_start(struct ifnet *);
164static void rum_watchdog(struct ifnet *);
165static int rum_ioctl(struct ifnet *, u_long, void *);
166static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
167 int);
168static uint32_t rum_read(struct rum_softc *, uint16_t);
169static void rum_read_multi(struct rum_softc *, uint16_t, void *,
170 int);
171static void rum_write(struct rum_softc *, uint16_t, uint32_t);
172static void rum_write_multi(struct rum_softc *, uint16_t, void *,
173 size_t);
174static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
175static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
176static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
177static void rum_select_antenna(struct rum_softc *);
178static void rum_enable_mrr(struct rum_softc *);
179static void rum_set_txpreamble(struct rum_softc *);
180static void rum_set_basicrates(struct rum_softc *);
181static void rum_select_band(struct rum_softc *,
182 struct ieee80211_channel *);
183static void rum_set_chan(struct rum_softc *,
184 struct ieee80211_channel *);
185static void rum_enable_tsf_sync(struct rum_softc *);
186static void rum_update_slot(struct rum_softc *);
187static void rum_set_bssid(struct rum_softc *, const uint8_t *);
188static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
189static void rum_update_promisc(struct rum_softc *);
190static const char *rum_get_rf(int);
191static void rum_read_eeprom(struct rum_softc *);
192static int rum_bbp_init(struct rum_softc *);
193static int rum_init(struct ifnet *);
194static void rum_stop(struct ifnet *, int);
195static int rum_load_microcode(struct rum_softc *, const u_char *,
196 size_t);
197static int rum_prepare_beacon(struct rum_softc *);
198static void rum_newassoc(struct ieee80211_node *, int);
199static void rum_amrr_start(struct rum_softc *,
200 struct ieee80211_node *);
201static void rum_amrr_timeout(void *);
202static void rum_amrr_update(struct usbd_xfer *, void *,
203 usbd_status);
204
205/*
206 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
207 */
208static const struct ieee80211_rateset rum_rateset_11a =
209 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
210
211static const struct ieee80211_rateset rum_rateset_11b =
212 { 4, { 2, 4, 11, 22 } };
213
214static const struct ieee80211_rateset rum_rateset_11g =
215 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
216
217static const struct {
218 uint32_t reg;
219 uint32_t val;
220} rum_def_mac[] = {
221 RT2573_DEF_MAC
222};
223
224static const struct {
225 uint8_t reg;
226 uint8_t val;
227} rum_def_bbp[] = {
228 RT2573_DEF_BBP
229};
230
231static const struct rfprog {
232 uint8_t chan;
233 uint32_t r1, r2, r3, r4;
234} rum_rf5226[] = {
235 RT2573_RF5226
236}, rum_rf5225[] = {
237 RT2573_RF5225
238};
239
240static int rum_match(device_t, cfdata_t, void *);
241static void rum_attach(device_t, device_t, void *);
242static int rum_detach(device_t, int);
243static int rum_activate(device_t, enum devact);
244extern struct cfdriver rum_cd;
245CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
246 rum_detach, rum_activate);
247
248static int
249rum_match(device_t parent, cfdata_t match, void *aux)
250{
251 struct usb_attach_arg *uaa = aux;
252
253 return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
254 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
255}
256
257static int
258rum_attachhook(void *xsc)
259{
260 struct rum_softc *sc = xsc;
261 firmware_handle_t fwh;
262 const char *name = "rum-rt2573";
263 u_char *ucode;
264 size_t size;
265 int error;
266
267 if ((error = firmware_open("rum", name, &fwh)) != 0) {
268 printf("%s: failed firmware_open of file %s (error %d)\n",
269 device_xname(sc->sc_dev), name, error);
270 return error;
271 }
272 size = firmware_get_size(fwh);
273 ucode = firmware_malloc(size);
274 if (ucode == NULL) {
275 printf("%s: failed to allocate firmware memory\n",
276 device_xname(sc->sc_dev));
277 firmware_close(fwh);
278 return ENOMEM;
279 }
280 error = firmware_read(fwh, 0, ucode, size);
281 firmware_close(fwh);
282 if (error != 0) {
283 printf("%s: failed to read firmware (error %d)\n",
284 device_xname(sc->sc_dev), error);
285 firmware_free(ucode, size);
286 return error;
287 }
288
289 if (rum_load_microcode(sc, ucode, size) != 0) {
290 printf("%s: could not load 8051 microcode\n",
291 device_xname(sc->sc_dev));
292 firmware_free(ucode, size);
293 return ENXIO;
294 }
295
296 firmware_free(ucode, size);
297 sc->sc_flags |= RT2573_FWLOADED;
298
299 return 0;
300}
301
302static void
303rum_attach(device_t parent, device_t self, void *aux)
304{
305 struct rum_softc *sc = device_private(self);
306 struct usb_attach_arg *uaa = aux;
307 struct ieee80211com *ic = &sc->sc_ic;
308 struct ifnet *ifp = &sc->sc_if;
309 usb_interface_descriptor_t *id;
310 usb_endpoint_descriptor_t *ed;
311 usbd_status error;
312 char *devinfop;
313 int i, ntries;
314 uint32_t tmp;
315
316 sc->sc_dev = self;
317 sc->sc_udev = uaa->uaa_device;
318 sc->sc_flags = 0;
319
320 aprint_naive("\n");
321 aprint_normal("\n");
322
323 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
324 aprint_normal_dev(self, "%s\n", devinfop);
325 usbd_devinfo_free(devinfop);
326
327 error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
328 if (error != 0) {
329 aprint_error_dev(self, "failed to set configuration"
330 ", err=%s\n", usbd_errstr(error));
331 return;
332 }
333
334 /* get the first interface handle */
335 error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
336 &sc->sc_iface);
337 if (error != 0) {
338 aprint_error_dev(self, "could not get interface handle\n");
339 return;
340 }
341
342 /*
343 * Find endpoints.
344 */
345 id = usbd_get_interface_descriptor(sc->sc_iface);
346
347 sc->sc_rx_no = sc->sc_tx_no = -1;
348 for (i = 0; i < id->bNumEndpoints; i++) {
349 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
350 if (ed == NULL) {
351 aprint_error_dev(self,
352 "no endpoint descriptor for iface %d\n", i);
353 return;
354 }
355
356 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
357 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
358 sc->sc_rx_no = ed->bEndpointAddress;
359 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
360 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
361 sc->sc_tx_no = ed->bEndpointAddress;
362 }
363 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
364 aprint_error_dev(self, "missing endpoint\n");
365 return;
366 }
367
368 usb_init_task(&sc->sc_task, rum_task, sc, 0);
369 callout_init(&sc->sc_scan_ch, 0);
370
371 sc->amrr.amrr_min_success_threshold = 1;
372 sc->amrr.amrr_max_success_threshold = 10;
373 callout_init(&sc->sc_amrr_ch, 0);
374
375 /* retrieve RT2573 rev. no */
376 for (ntries = 0; ntries < 1000; ntries++) {
377 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
378 break;
379 DELAY(1000);
380 }
381 if (ntries == 1000) {
382 aprint_error_dev(self, "timeout waiting for chip to settle\n");
383 return;
384 }
385
386 /* retrieve MAC address and various other things from EEPROM */
387 rum_read_eeprom(sc);
388
389 aprint_normal_dev(self,
390 "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
391 sc->macbbp_rev, tmp,
392 rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
393
394 ic->ic_ifp = ifp;
395 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
396 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
397 ic->ic_state = IEEE80211_S_INIT;
398
399 /* set device capabilities */
400 ic->ic_caps =
401 IEEE80211_C_IBSS | /* IBSS mode supported */
402 IEEE80211_C_MONITOR | /* monitor mode supported */
403 IEEE80211_C_HOSTAP | /* HostAp mode supported */
404 IEEE80211_C_TXPMGT | /* tx power management */
405 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
406 IEEE80211_C_SHSLOT | /* short slot time supported */
407 IEEE80211_C_WPA; /* 802.11i */
408
409 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
410 /* set supported .11a rates */
411 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
412
413 /* set supported .11a channels */
414 for (i = 34; i <= 46; i += 4) {
415 ic->ic_channels[i].ic_freq =
416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 }
419 for (i = 36; i <= 64; i += 4) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 }
424 for (i = 100; i <= 140; i += 4) {
425 ic->ic_channels[i].ic_freq =
426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 }
429 for (i = 149; i <= 165; i += 4) {
430 ic->ic_channels[i].ic_freq =
431 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
432 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
433 }
434 }
435
436 /* set supported .11b and .11g rates */
437 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
438 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
439
440 /* set supported .11b and .11g channels (1 through 14) */
441 for (i = 1; i <= 14; i++) {
442 ic->ic_channels[i].ic_freq =
443 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444 ic->ic_channels[i].ic_flags =
445 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447 }
448
449 ifp->if_softc = sc;
450 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451 ifp->if_init = rum_init;
452 ifp->if_ioctl = rum_ioctl;
453 ifp->if_start = rum_start;
454 ifp->if_watchdog = rum_watchdog;
455 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
456 IFQ_SET_READY(&ifp->if_snd);
457 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
458
459 if_attach(ifp);
460 ieee80211_ifattach(ic);
461 ic->ic_newassoc = rum_newassoc;
462
463 /* override state transition machine */
464 sc->sc_newstate = ic->ic_newstate;
465 ic->ic_newstate = rum_newstate;
466 ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
467
468 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
469 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
470 &sc->sc_drvbpf);
471
472 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
473 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
474 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
475
476 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
477 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
478 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
479
480 ieee80211_announce(ic);
481
482 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
483
484 if (!pmf_device_register(self, NULL, NULL))
485 aprint_error_dev(self, "couldn't establish power handler\n");
486
487 return;
488}
489
490static int
491rum_detach(device_t self, int flags)
492{
493 struct rum_softc *sc = device_private(self);
494 struct ieee80211com *ic = &sc->sc_ic;
495 struct ifnet *ifp = &sc->sc_if;
496 int s;
497
498 if (!ifp->if_softc)
499 return 0;
500
501 pmf_device_deregister(self);
502
503 s = splusb();
504
505 rum_stop(ifp, 1);
506 usb_rem_task(sc->sc_udev, &sc->sc_task);
507 callout_stop(&sc->sc_scan_ch);
508 callout_stop(&sc->sc_amrr_ch);
509
510 bpf_detach(ifp);
511 ieee80211_ifdetach(ic); /* free all nodes */
512 if_detach(ifp);
513
514 splx(s);
515
516 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
517
518 return 0;
519}
520
521static int
522rum_alloc_tx_list(struct rum_softc *sc)
523{
524 struct rum_tx_data *data;
525 int i, error;
526
527 sc->tx_cur = sc->tx_queued = 0;
528
529 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
530 data = &sc->tx_data[i];
531
532 data->sc = sc;
533
534 error = usbd_create_xfer(sc->sc_tx_pipeh,
535 RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
536 USBD_FORCE_SHORT_XFER, 0, &data->xfer);
537 if (error) {
538 printf("%s: could not allocate tx xfer\n",
539 device_xname(sc->sc_dev));
540 goto fail;
541 }
542 data->buf = usbd_get_buffer(data->xfer);
543
544 /* clean Tx descriptor */
545 memset(data->buf, 0, RT2573_TX_DESC_SIZE);
546 }
547
548 return 0;
549
550fail: rum_free_tx_list(sc);
551 return error;
552}
553
554static void
555rum_free_tx_list(struct rum_softc *sc)
556{
557 struct rum_tx_data *data;
558 int i;
559
560 for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
561 data = &sc->tx_data[i];
562
563 if (data->xfer != NULL) {
564 usbd_destroy_xfer(data->xfer);
565 data->xfer = NULL;
566 }
567
568 if (data->ni != NULL) {
569 ieee80211_free_node(data->ni);
570 data->ni = NULL;
571 }
572 }
573}
574
575static int
576rum_alloc_rx_list(struct rum_softc *sc)
577{
578 struct rum_rx_data *data;
579 int i, error;
580
581 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
582 data = &sc->rx_data[i];
583
584 data->sc = sc;
585
586 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
587 USBD_SHORT_XFER_OK, 0, &data->xfer);
588 if (error) {
589 printf("%s: could not allocate rx xfer\n",
590 device_xname(sc->sc_dev));
591 goto fail;
592 }
593
594 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
595 if (data->m == NULL) {
596 printf("%s: could not allocate rx mbuf\n",
597 device_xname(sc->sc_dev));
598 error = ENOMEM;
599 goto fail;
600 }
601
602 MCLGET(data->m, M_DONTWAIT);
603 if (!(data->m->m_flags & M_EXT)) {
604 printf("%s: could not allocate rx mbuf cluster\n",
605 device_xname(sc->sc_dev));
606 error = ENOMEM;
607 goto fail;
608 }
609
610 data->buf = mtod(data->m, uint8_t *);
611 }
612
613 return 0;
614
615fail: rum_free_rx_list(sc);
616 return error;
617}
618
619static void
620rum_free_rx_list(struct rum_softc *sc)
621{
622 struct rum_rx_data *data;
623 int i;
624
625 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
626 data = &sc->rx_data[i];
627
628 if (data->xfer != NULL) {
629 usbd_destroy_xfer(data->xfer);
630 data->xfer = NULL;
631 }
632
633 if (data->m != NULL) {
634 m_freem(data->m);
635 data->m = NULL;
636 }
637 }
638}
639
640static int
641rum_media_change(struct ifnet *ifp)
642{
643 int error;
644
645 error = ieee80211_media_change(ifp);
646 if (error != ENETRESET)
647 return error;
648
649 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
650 rum_init(ifp);
651
652 return 0;
653}
654
655/*
656 * This function is called periodically (every 200ms) during scanning to
657 * switch from one channel to another.
658 */
659static void
660rum_next_scan(void *arg)
661{
662 struct rum_softc *sc = arg;
663 struct ieee80211com *ic = &sc->sc_ic;
664 int s;
665
666 s = splnet();
667 if (ic->ic_state == IEEE80211_S_SCAN)
668 ieee80211_next_scan(ic);
669 splx(s);
670}
671
672static void
673rum_task(void *arg)
674{
675 struct rum_softc *sc = arg;
676 struct ieee80211com *ic = &sc->sc_ic;
677 enum ieee80211_state ostate;
678 struct ieee80211_node *ni;
679 uint32_t tmp;
680
681 ostate = ic->ic_state;
682
683 switch (sc->sc_state) {
684 case IEEE80211_S_INIT:
685 if (ostate == IEEE80211_S_RUN) {
686 /* abort TSF synchronization */
687 tmp = rum_read(sc, RT2573_TXRX_CSR9);
688 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
689 }
690 break;
691
692 case IEEE80211_S_SCAN:
693 rum_set_chan(sc, ic->ic_curchan);
694 callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
695 break;
696
697 case IEEE80211_S_AUTH:
698 rum_set_chan(sc, ic->ic_curchan);
699 break;
700
701 case IEEE80211_S_ASSOC:
702 rum_set_chan(sc, ic->ic_curchan);
703 break;
704
705 case IEEE80211_S_RUN:
706 rum_set_chan(sc, ic->ic_curchan);
707
708 ni = ic->ic_bss;
709
710 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
711 rum_update_slot(sc);
712 rum_enable_mrr(sc);
713 rum_set_txpreamble(sc);
714 rum_set_basicrates(sc);
715 rum_set_bssid(sc, ni->ni_bssid);
716 }
717
718 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
719 ic->ic_opmode == IEEE80211_M_IBSS)
720 rum_prepare_beacon(sc);
721
722 if (ic->ic_opmode != IEEE80211_M_MONITOR)
723 rum_enable_tsf_sync(sc);
724
725 if (ic->ic_opmode == IEEE80211_M_STA) {
726 /* fake a join to init the tx rate */
727 rum_newassoc(ic->ic_bss, 1);
728
729 /* enable automatic rate adaptation in STA mode */
730 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
731 rum_amrr_start(sc, ni);
732 }
733
734 break;
735 }
736
737 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
738}
739
740static int
741rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
742{
743 struct rum_softc *sc = ic->ic_ifp->if_softc;
744
745 usb_rem_task(sc->sc_udev, &sc->sc_task);
746 callout_stop(&sc->sc_scan_ch);
747 callout_stop(&sc->sc_amrr_ch);
748
749 /* do it in a process context */
750 sc->sc_state = nstate;
751 sc->sc_arg = arg;
752 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
753
754 return 0;
755}
756
757/* quickly determine if a given rate is CCK or OFDM */
758#define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
759
760#define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
761#define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
762
763static void
764rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
765{
766 struct rum_tx_data *data = priv;
767 struct rum_softc *sc = data->sc;
768 struct ifnet *ifp = &sc->sc_if;
769 int s;
770
771 if (status != USBD_NORMAL_COMPLETION) {
772 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
773 return;
774
775 printf("%s: could not transmit buffer: %s\n",
776 device_xname(sc->sc_dev), usbd_errstr(status));
777
778 if (status == USBD_STALLED)
779 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
780
781 ifp->if_oerrors++;
782 return;
783 }
784
785 s = splnet();
786
787 ieee80211_free_node(data->ni);
788 data->ni = NULL;
789
790 sc->tx_queued--;
791 ifp->if_opackets++;
792
793 DPRINTFN(10, ("tx done\n"));
794
795 sc->sc_tx_timer = 0;
796 ifp->if_flags &= ~IFF_OACTIVE;
797 rum_start(ifp);
798
799 splx(s);
800}
801
802static void
803rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
804{
805 struct rum_rx_data *data = priv;
806 struct rum_softc *sc = data->sc;
807 struct ieee80211com *ic = &sc->sc_ic;
808 struct ifnet *ifp = &sc->sc_if;
809 struct rum_rx_desc *desc;
810 struct ieee80211_frame *wh;
811 struct ieee80211_node *ni;
812 struct mbuf *mnew, *m;
813 int s, len;
814
815 if (status != USBD_NORMAL_COMPLETION) {
816 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
817 return;
818
819 if (status == USBD_STALLED)
820 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
821 goto skip;
822 }
823
824 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
825
826 if (len < (int)(RT2573_RX_DESC_SIZE +
827 sizeof(struct ieee80211_frame_min))) {
828 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
829 len));
830 ifp->if_ierrors++;
831 goto skip;
832 }
833
834 desc = (struct rum_rx_desc *)data->buf;
835
836 if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
837 /*
838 * This should not happen since we did not request to receive
839 * those frames when we filled RT2573_TXRX_CSR0.
840 */
841 DPRINTFN(5, ("CRC error\n"));
842 ifp->if_ierrors++;
843 goto skip;
844 }
845
846 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
847 if (mnew == NULL) {
848 printf("%s: could not allocate rx mbuf\n",
849 device_xname(sc->sc_dev));
850 ifp->if_ierrors++;
851 goto skip;
852 }
853
854 MCLGET(mnew, M_DONTWAIT);
855 if (!(mnew->m_flags & M_EXT)) {
856 printf("%s: could not allocate rx mbuf cluster\n",
857 device_xname(sc->sc_dev));
858 m_freem(mnew);
859 ifp->if_ierrors++;
860 goto skip;
861 }
862
863 m = data->m;
864 data->m = mnew;
865 data->buf = mtod(data->m, uint8_t *);
866
867 /* finalize mbuf */
868 m_set_rcvif(m, ifp);
869 m->m_data = (void *)(desc + 1);
870 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
871
872 s = splnet();
873
874 if (sc->sc_drvbpf != NULL) {
875 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
876
877 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
878 tap->wr_rate = rum_rxrate(desc);
879 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
880 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
881 tap->wr_antenna = sc->rx_ant;
882 tap->wr_antsignal = desc->rssi;
883
884 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
885 }
886
887 wh = mtod(m, struct ieee80211_frame *);
888 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
889
890 /* send the frame to the 802.11 layer */
891 ieee80211_input(ic, m, ni, desc->rssi, 0);
892
893 /* node is no longer needed */
894 ieee80211_free_node(ni);
895
896 splx(s);
897
898 DPRINTFN(15, ("rx done\n"));
899
900skip: /* setup a new transfer */
901 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
902 USBD_NO_TIMEOUT, rum_rxeof);
903 usbd_transfer(xfer);
904}
905
906/*
907 * This function is only used by the Rx radiotap code. It returns the rate at
908 * which a given frame was received.
909 */
910static uint8_t
911rum_rxrate(const struct rum_rx_desc *desc)
912{
913 if (le32toh(desc->flags) & RT2573_RX_OFDM) {
914 /* reverse function of rum_plcp_signal */
915 switch (desc->rate) {
916 case 0xb: return 12;
917 case 0xf: return 18;
918 case 0xa: return 24;
919 case 0xe: return 36;
920 case 0x9: return 48;
921 case 0xd: return 72;
922 case 0x8: return 96;
923 case 0xc: return 108;
924 }
925 } else {
926 if (desc->rate == 10)
927 return 2;
928 if (desc->rate == 20)
929 return 4;
930 if (desc->rate == 55)
931 return 11;
932 if (desc->rate == 110)
933 return 22;
934 }
935 return 2; /* should not get there */
936}
937
938/*
939 * Return the expected ack rate for a frame transmitted at rate `rate'.
940 * XXX: this should depend on the destination node basic rate set.
941 */
942static int
943rum_ack_rate(struct ieee80211com *ic, int rate)
944{
945 switch (rate) {
946 /* CCK rates */
947 case 2:
948 return 2;
949 case 4:
950 case 11:
951 case 22:
952 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
953
954 /* OFDM rates */
955 case 12:
956 case 18:
957 return 12;
958 case 24:
959 case 36:
960 return 24;
961 case 48:
962 case 72:
963 case 96:
964 case 108:
965 return 48;
966 }
967
968 /* default to 1Mbps */
969 return 2;
970}
971
972/*
973 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
974 * The function automatically determines the operating mode depending on the
975 * given rate. `flags' indicates whether short preamble is in use or not.
976 */
977static uint16_t
978rum_txtime(int len, int rate, uint32_t flags)
979{
980 uint16_t txtime;
981
982 if (RUM_RATE_IS_OFDM(rate)) {
983 /* IEEE Std 802.11a-1999, pp. 37 */
984 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
985 txtime = 16 + 4 + 4 * txtime + 6;
986 } else {
987 /* IEEE Std 802.11b-1999, pp. 28 */
988 txtime = (16 * len + rate - 1) / rate;
989 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
990 txtime += 72 + 24;
991 else
992 txtime += 144 + 48;
993 }
994 return txtime;
995}
996
997static uint8_t
998rum_plcp_signal(int rate)
999{
1000 switch (rate) {
1001 /* CCK rates (returned values are device-dependent) */
1002 case 2: return 0x0;
1003 case 4: return 0x1;
1004 case 11: return 0x2;
1005 case 22: return 0x3;
1006
1007 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1008 case 12: return 0xb;
1009 case 18: return 0xf;
1010 case 24: return 0xa;
1011 case 36: return 0xe;
1012 case 48: return 0x9;
1013 case 72: return 0xd;
1014 case 96: return 0x8;
1015 case 108: return 0xc;
1016
1017 /* unsupported rates (should not get there) */
1018 default: return 0xff;
1019 }
1020}
1021
1022static void
1023rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1024 uint32_t flags, uint16_t xflags, int len, int rate)
1025{
1026 struct ieee80211com *ic = &sc->sc_ic;
1027 uint16_t plcp_length;
1028 int remainder;
1029
1030 desc->flags = htole32(flags);
1031 desc->flags |= htole32(RT2573_TX_VALID);
1032 desc->flags |= htole32(len << 16);
1033
1034 desc->xflags = htole16(xflags);
1035
1036 desc->wme = htole16(
1037 RT2573_QID(0) |
1038 RT2573_AIFSN(2) |
1039 RT2573_LOGCWMIN(4) |
1040 RT2573_LOGCWMAX(10));
1041
1042 /* setup PLCP fields */
1043 desc->plcp_signal = rum_plcp_signal(rate);
1044 desc->plcp_service = 4;
1045
1046 len += IEEE80211_CRC_LEN;
1047 if (RUM_RATE_IS_OFDM(rate)) {
1048 desc->flags |= htole32(RT2573_TX_OFDM);
1049
1050 plcp_length = len & 0xfff;
1051 desc->plcp_length_hi = plcp_length >> 6;
1052 desc->plcp_length_lo = plcp_length & 0x3f;
1053 } else {
1054 plcp_length = (16 * len + rate - 1) / rate;
1055 if (rate == 22) {
1056 remainder = (16 * len) % 22;
1057 if (remainder != 0 && remainder < 7)
1058 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1059 }
1060 desc->plcp_length_hi = plcp_length >> 8;
1061 desc->plcp_length_lo = plcp_length & 0xff;
1062
1063 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1064 desc->plcp_signal |= 0x08;
1065 }
1066}
1067
1068#define RUM_TX_TIMEOUT 5000
1069
1070static int
1071rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1072{
1073 struct ieee80211com *ic = &sc->sc_ic;
1074 struct rum_tx_desc *desc;
1075 struct rum_tx_data *data;
1076 struct ieee80211_frame *wh;
1077 struct ieee80211_key *k;
1078 uint32_t flags = 0;
1079 uint16_t dur;
1080 usbd_status error;
1081 int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1082
1083 wh = mtod(m0, struct ieee80211_frame *);
1084
1085 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1086 k = ieee80211_crypto_encap(ic, ni, m0);
1087 if (k == NULL) {
1088 m_freem(m0);
1089 return ENOBUFS;
1090 }
1091
1092 /* packet header may have moved, reset our local pointer */
1093 wh = mtod(m0, struct ieee80211_frame *);
1094 }
1095
1096 /* compute actual packet length (including CRC and crypto overhead) */
1097 pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1098
1099 /* pickup a rate */
1100 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1101 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1102 IEEE80211_FC0_TYPE_MGT)) {
1103 /* mgmt/multicast frames are sent at the lowest avail. rate */
1104 rate = ni->ni_rates.rs_rates[0];
1105 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1106 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1107 } else
1108 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1109 if (rate == 0)
1110 rate = 2; /* XXX should not happen */
1111 rate &= IEEE80211_RATE_VAL;
1112
1113 /* check if RTS/CTS or CTS-to-self protection must be used */
1114 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1115 /* multicast frames are not sent at OFDM rates in 802.11b/g */
1116 if (pktlen > ic->ic_rtsthreshold) {
1117 needrts = 1; /* RTS/CTS based on frame length */
1118 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1119 RUM_RATE_IS_OFDM(rate)) {
1120 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1121 needcts = 1; /* CTS-to-self */
1122 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1123 needrts = 1; /* RTS/CTS */
1124 }
1125 }
1126 if (needrts || needcts) {
1127 struct mbuf *mprot;
1128 int protrate, ackrate;
1129
1130 protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1131 ackrate = rum_ack_rate(ic, rate);
1132
1133 dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1134 rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1135 2 * sc->sifs;
1136 if (needrts) {
1137 dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1138 protrate), ic->ic_flags) + sc->sifs;
1139 mprot = ieee80211_get_rts(ic, wh, dur);
1140 } else {
1141 mprot = ieee80211_get_cts_to_self(ic, dur);
1142 }
1143 if (mprot == NULL) {
1144 aprint_error_dev(sc->sc_dev,
1145 "couldn't allocate protection frame\n");
1146 m_freem(m0);
1147 return ENOBUFS;
1148 }
1149
1150 data = &sc->tx_data[sc->tx_cur];
1151 desc = (struct rum_tx_desc *)data->buf;
1152
1153 /* avoid multiple free() of the same node for each fragment */
1154 data->ni = ieee80211_ref_node(ni);
1155
1156 m_copydata(mprot, 0, mprot->m_pkthdr.len,
1157 data->buf + RT2573_TX_DESC_SIZE);
1158 rum_setup_tx_desc(sc, desc,
1159 (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1160 0, mprot->m_pkthdr.len, protrate);
1161
1162 /* no roundup necessary here */
1163 xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1164
1165 /* XXX may want to pass the protection frame to BPF */
1166
1167 /* mbuf is no longer needed */
1168 m_freem(mprot);
1169
1170 usbd_setup_xfer(data->xfer, data, data->buf,
1171 xferlen, USBD_FORCE_SHORT_XFER,
1172 RUM_TX_TIMEOUT, rum_txeof);
1173 error = usbd_transfer(data->xfer);
1174 if (error != USBD_NORMAL_COMPLETION &&
1175 error != USBD_IN_PROGRESS) {
1176 m_freem(m0);
1177 return error;
1178 }
1179
1180 sc->tx_queued++;
1181 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1182
1183 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1184 }
1185
1186 data = &sc->tx_data[sc->tx_cur];
1187 desc = (struct rum_tx_desc *)data->buf;
1188
1189 data->ni = ni;
1190
1191 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1192 flags |= RT2573_TX_NEED_ACK;
1193
1194 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1195 ic->ic_flags) + sc->sifs;
1196 *(uint16_t *)wh->i_dur = htole16(dur);
1197
1198 /* tell hardware to set timestamp in probe responses */
1199 if ((wh->i_fc[0] &
1200 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1201 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1202 flags |= RT2573_TX_TIMESTAMP;
1203 }
1204
1205 if (sc->sc_drvbpf != NULL) {
1206 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1207
1208 tap->wt_flags = 0;
1209 tap->wt_rate = rate;
1210 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1211 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1212 tap->wt_antenna = sc->tx_ant;
1213
1214 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1215 }
1216
1217 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1218 rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1219
1220 /* align end on a 4-bytes boundary */
1221 xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1222
1223 /*
1224 * No space left in the last URB to store the extra 4 bytes, force
1225 * sending of another URB.
1226 */
1227 if ((xferlen % 64) == 0)
1228 xferlen += 4;
1229
1230 DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1231 (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1232 rate, xferlen));
1233
1234 /* mbuf is no longer needed */
1235 m_freem(m0);
1236
1237 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1238 USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1239 error = usbd_transfer(data->xfer);
1240 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1241 return error;
1242
1243 sc->tx_queued++;
1244 sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1245
1246 return 0;
1247}
1248
1249static void
1250rum_start(struct ifnet *ifp)
1251{
1252 struct rum_softc *sc = ifp->if_softc;
1253 struct ieee80211com *ic = &sc->sc_ic;
1254 struct ether_header *eh;
1255 struct ieee80211_node *ni;
1256 struct mbuf *m0;
1257
1258 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1259 return;
1260
1261 for (;;) {
1262 IF_POLL(&ic->ic_mgtq, m0);
1263 if (m0 != NULL) {
1264 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1265 ifp->if_flags |= IFF_OACTIVE;
1266 break;
1267 }
1268 IF_DEQUEUE(&ic->ic_mgtq, m0);
1269
1270 ni = M_GETCTX(m0, struct ieee80211_node *);
1271 M_CLEARCTX(m0);
1272 bpf_mtap3(ic->ic_rawbpf, m0);
1273 if (rum_tx_data(sc, m0, ni) != 0)
1274 break;
1275
1276 } else {
1277 if (ic->ic_state != IEEE80211_S_RUN)
1278 break;
1279 IFQ_POLL(&ifp->if_snd, m0);
1280 if (m0 == NULL)
1281 break;
1282 if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1283 ifp->if_flags |= IFF_OACTIVE;
1284 break;
1285 }
1286 IFQ_DEQUEUE(&ifp->if_snd, m0);
1287 if (m0->m_len < (int)sizeof(struct ether_header) &&
1288 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1289 continue;
1290
1291 eh = mtod(m0, struct ether_header *);
1292 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1293 if (ni == NULL) {
1294 m_freem(m0);
1295 continue;
1296 }
1297 bpf_mtap(ifp, m0);
1298 m0 = ieee80211_encap(ic, m0, ni);
1299 if (m0 == NULL) {
1300 ieee80211_free_node(ni);
1301 continue;
1302 }
1303 bpf_mtap3(ic->ic_rawbpf, m0);
1304 if (rum_tx_data(sc, m0, ni) != 0) {
1305 ieee80211_free_node(ni);
1306 ifp->if_oerrors++;
1307 break;
1308 }
1309 }
1310
1311 sc->sc_tx_timer = 5;
1312 ifp->if_timer = 1;
1313 }
1314}
1315
1316static void
1317rum_watchdog(struct ifnet *ifp)
1318{
1319 struct rum_softc *sc = ifp->if_softc;
1320 struct ieee80211com *ic = &sc->sc_ic;
1321
1322 ifp->if_timer = 0;
1323
1324 if (sc->sc_tx_timer > 0) {
1325 if (--sc->sc_tx_timer == 0) {
1326 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1327 /*rum_init(ifp); XXX needs a process context! */
1328 ifp->if_oerrors++;
1329 return;
1330 }
1331 ifp->if_timer = 1;
1332 }
1333
1334 ieee80211_watchdog(ic);
1335}
1336
1337static int
1338rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1339{
1340#define IS_RUNNING(ifp) \
1341 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1342
1343 struct rum_softc *sc = ifp->if_softc;
1344 struct ieee80211com *ic = &sc->sc_ic;
1345 int s, error = 0;
1346
1347 s = splnet();
1348
1349 switch (cmd) {
1350 case SIOCSIFFLAGS:
1351 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1352 break;
1353 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1354 case IFF_UP|IFF_RUNNING:
1355 rum_update_promisc(sc);
1356 break;
1357 case IFF_UP:
1358 rum_init(ifp);
1359 break;
1360 case IFF_RUNNING:
1361 rum_stop(ifp, 1);
1362 break;
1363 case 0:
1364 break;
1365 }
1366 break;
1367
1368 case SIOCADDMULTI:
1369 case SIOCDELMULTI:
1370 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1371 error = 0;
1372 }
1373 break;
1374
1375 default:
1376 error = ieee80211_ioctl(ic, cmd, data);
1377 }
1378
1379 if (error == ENETRESET) {
1380 if (IS_RUNNING(ifp) &&
1381 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1382 rum_init(ifp);
1383 error = 0;
1384 }
1385
1386 splx(s);
1387
1388 return error;
1389#undef IS_RUNNING
1390}
1391
1392static void
1393rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1394{
1395 usb_device_request_t req;
1396 usbd_status error;
1397
1398 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1399 req.bRequest = RT2573_READ_EEPROM;
1400 USETW(req.wValue, 0);
1401 USETW(req.wIndex, addr);
1402 USETW(req.wLength, len);
1403
1404 error = usbd_do_request(sc->sc_udev, &req, buf);
1405 if (error != 0) {
1406 printf("%s: could not read EEPROM: %s\n",
1407 device_xname(sc->sc_dev), usbd_errstr(error));
1408 }
1409}
1410
1411static uint32_t
1412rum_read(struct rum_softc *sc, uint16_t reg)
1413{
1414 uint32_t val;
1415
1416 rum_read_multi(sc, reg, &val, sizeof(val));
1417
1418 return le32toh(val);
1419}
1420
1421static void
1422rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1423{
1424 usb_device_request_t req;
1425 usbd_status error;
1426
1427 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1428 req.bRequest = RT2573_READ_MULTI_MAC;
1429 USETW(req.wValue, 0);
1430 USETW(req.wIndex, reg);
1431 USETW(req.wLength, len);
1432
1433 error = usbd_do_request(sc->sc_udev, &req, buf);
1434 if (error != 0) {
1435 printf("%s: could not multi read MAC register: %s\n",
1436 device_xname(sc->sc_dev), usbd_errstr(error));
1437 }
1438}
1439
1440static void
1441rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1442{
1443 uint32_t tmp = htole32(val);
1444
1445 rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1446}
1447
1448static void
1449rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1450{
1451 usb_device_request_t req;
1452 usbd_status error;
1453 int offset;
1454
1455 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1456 req.bRequest = RT2573_WRITE_MULTI_MAC;
1457 USETW(req.wValue, 0);
1458
1459 /* write at most 64 bytes at a time */
1460 for (offset = 0; offset < len; offset += 64) {
1461 USETW(req.wIndex, reg + offset);
1462 USETW(req.wLength, MIN(len - offset, 64));
1463
1464 error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1465 if (error != 0) {
1466 printf("%s: could not multi write MAC register: %s\n",
1467 device_xname(sc->sc_dev), usbd_errstr(error));
1468 }
1469 }
1470}
1471
1472static void
1473rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1474{
1475 uint32_t tmp;
1476 int ntries;
1477
1478 for (ntries = 0; ntries < 5; ntries++) {
1479 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1480 break;
1481 }
1482 if (ntries == 5) {
1483 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1484 return;
1485 }
1486
1487 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1488 rum_write(sc, RT2573_PHY_CSR3, tmp);
1489}
1490
1491static uint8_t
1492rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1493{
1494 uint32_t val;
1495 int ntries;
1496
1497 for (ntries = 0; ntries < 5; ntries++) {
1498 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1499 break;
1500 }
1501 if (ntries == 5) {
1502 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1503 return 0;
1504 }
1505
1506 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1507 rum_write(sc, RT2573_PHY_CSR3, val);
1508
1509 for (ntries = 0; ntries < 100; ntries++) {
1510 val = rum_read(sc, RT2573_PHY_CSR3);
1511 if (!(val & RT2573_BBP_BUSY))
1512 return val & 0xff;
1513 DELAY(1);
1514 }
1515
1516 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1517 return 0;
1518}
1519
1520static void
1521rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1522{
1523 uint32_t tmp;
1524 int ntries;
1525
1526 for (ntries = 0; ntries < 5; ntries++) {
1527 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1528 break;
1529 }
1530 if (ntries == 5) {
1531 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1532 return;
1533 }
1534
1535 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1536 (reg & 3);
1537 rum_write(sc, RT2573_PHY_CSR4, tmp);
1538
1539 /* remember last written value in sc */
1540 sc->rf_regs[reg] = val;
1541
1542 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1543}
1544
1545static void
1546rum_select_antenna(struct rum_softc *sc)
1547{
1548 uint8_t bbp4, bbp77;
1549 uint32_t tmp;
1550
1551 bbp4 = rum_bbp_read(sc, 4);
1552 bbp77 = rum_bbp_read(sc, 77);
1553
1554 /* TBD */
1555
1556 /* make sure Rx is disabled before switching antenna */
1557 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1558 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1559
1560 rum_bbp_write(sc, 4, bbp4);
1561 rum_bbp_write(sc, 77, bbp77);
1562
1563 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1564}
1565
1566/*
1567 * Enable multi-rate retries for frames sent at OFDM rates.
1568 * In 802.11b/g mode, allow fallback to CCK rates.
1569 */
1570static void
1571rum_enable_mrr(struct rum_softc *sc)
1572{
1573 struct ieee80211com *ic = &sc->sc_ic;
1574 uint32_t tmp;
1575
1576 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1577
1578 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1579 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1580 tmp |= RT2573_MRR_CCK_FALLBACK;
1581 tmp |= RT2573_MRR_ENABLED;
1582
1583 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1584}
1585
1586static void
1587rum_set_txpreamble(struct rum_softc *sc)
1588{
1589 uint32_t tmp;
1590
1591 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1592
1593 tmp &= ~RT2573_SHORT_PREAMBLE;
1594 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1595 tmp |= RT2573_SHORT_PREAMBLE;
1596
1597 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1598}
1599
1600static void
1601rum_set_basicrates(struct rum_softc *sc)
1602{
1603 struct ieee80211com *ic = &sc->sc_ic;
1604
1605 /* update basic rate set */
1606 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1607 /* 11b basic rates: 1, 2Mbps */
1608 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1609 } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1610 /* 11a basic rates: 6, 12, 24Mbps */
1611 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1612 } else {
1613 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1614 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1615 }
1616}
1617
1618/*
1619 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1620 * driver.
1621 */
1622static void
1623rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1624{
1625 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1626 uint32_t tmp;
1627
1628 /* update all BBP registers that depend on the band */
1629 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1630 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1631 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1632 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1633 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1634 }
1635 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1636 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1637 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1638 }
1639
1640 sc->bbp17 = bbp17;
1641 rum_bbp_write(sc, 17, bbp17);
1642 rum_bbp_write(sc, 96, bbp96);
1643 rum_bbp_write(sc, 104, bbp104);
1644
1645 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1646 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1647 rum_bbp_write(sc, 75, 0x80);
1648 rum_bbp_write(sc, 86, 0x80);
1649 rum_bbp_write(sc, 88, 0x80);
1650 }
1651
1652 rum_bbp_write(sc, 35, bbp35);
1653 rum_bbp_write(sc, 97, bbp97);
1654 rum_bbp_write(sc, 98, bbp98);
1655
1656 tmp = rum_read(sc, RT2573_PHY_CSR0);
1657 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1658 if (IEEE80211_IS_CHAN_2GHZ(c))
1659 tmp |= RT2573_PA_PE_2GHZ;
1660 else
1661 tmp |= RT2573_PA_PE_5GHZ;
1662 rum_write(sc, RT2573_PHY_CSR0, tmp);
1663
1664 /* 802.11a uses a 16 microseconds short interframe space */
1665 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1666}
1667
1668static void
1669rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1670{
1671 struct ieee80211com *ic = &sc->sc_ic;
1672 const struct rfprog *rfprog;
1673 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1674 int8_t power;
1675 u_int i, chan;
1676
1677 chan = ieee80211_chan2ieee(ic, c);
1678 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1679 return;
1680
1681 /* select the appropriate RF settings based on what EEPROM says */
1682 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1683 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1684
1685 /* find the settings for this channel (we know it exists) */
1686 for (i = 0; rfprog[i].chan != chan; i++);
1687
1688 power = sc->txpow[i];
1689 if (power < 0) {
1690 bbp94 += power;
1691 power = 0;
1692 } else if (power > 31) {
1693 bbp94 += power - 31;
1694 power = 31;
1695 }
1696
1697 /*
1698 * If we are switching from the 2GHz band to the 5GHz band or
1699 * vice-versa, BBP registers need to be reprogrammed.
1700 */
1701 if (c->ic_flags != ic->ic_curchan->ic_flags) {
1702 rum_select_band(sc, c);
1703 rum_select_antenna(sc);
1704 }
1705 ic->ic_curchan = c;
1706
1707 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1708 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1709 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1710 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1711
1712 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1713 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1714 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1715 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1716
1717 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1718 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1719 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1720 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1721
1722 DELAY(10);
1723
1724 /* enable smart mode for MIMO-capable RFs */
1725 bbp3 = rum_bbp_read(sc, 3);
1726
1727 bbp3 &= ~RT2573_SMART_MODE;
1728 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1729 bbp3 |= RT2573_SMART_MODE;
1730
1731 rum_bbp_write(sc, 3, bbp3);
1732
1733 if (bbp94 != RT2573_BBPR94_DEFAULT)
1734 rum_bbp_write(sc, 94, bbp94);
1735}
1736
1737/*
1738 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1739 * and HostAP operating modes.
1740 */
1741static void
1742rum_enable_tsf_sync(struct rum_softc *sc)
1743{
1744 struct ieee80211com *ic = &sc->sc_ic;
1745 uint32_t tmp;
1746
1747 if (ic->ic_opmode != IEEE80211_M_STA) {
1748 /*
1749 * Change default 16ms TBTT adjustment to 8ms.
1750 * Must be done before enabling beacon generation.
1751 */
1752 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1753 }
1754
1755 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1756
1757 /* set beacon interval (in 1/16ms unit) */
1758 tmp |= ic->ic_bss->ni_intval * 16;
1759
1760 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1761 if (ic->ic_opmode == IEEE80211_M_STA)
1762 tmp |= RT2573_TSF_MODE(1);
1763 else
1764 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1765
1766 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1767}
1768
1769static void
1770rum_update_slot(struct rum_softc *sc)
1771{
1772 struct ieee80211com *ic = &sc->sc_ic;
1773 uint8_t slottime;
1774 uint32_t tmp;
1775
1776 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1777
1778 tmp = rum_read(sc, RT2573_MAC_CSR9);
1779 tmp = (tmp & ~0xff) | slottime;
1780 rum_write(sc, RT2573_MAC_CSR9, tmp);
1781
1782 DPRINTF(("setting slot time to %uus\n", slottime));
1783}
1784
1785static void
1786rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1787{
1788 uint32_t tmp;
1789
1790 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1791 rum_write(sc, RT2573_MAC_CSR4, tmp);
1792
1793 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1794 rum_write(sc, RT2573_MAC_CSR5, tmp);
1795}
1796
1797static void
1798rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1799{
1800 uint32_t tmp;
1801
1802 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1803 rum_write(sc, RT2573_MAC_CSR2, tmp);
1804
1805 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1806 rum_write(sc, RT2573_MAC_CSR3, tmp);
1807}
1808
1809static void
1810rum_update_promisc(struct rum_softc *sc)
1811{
1812 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1813 uint32_t tmp;
1814
1815 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1816
1817 tmp &= ~RT2573_DROP_NOT_TO_ME;
1818 if (!(ifp->if_flags & IFF_PROMISC))
1819 tmp |= RT2573_DROP_NOT_TO_ME;
1820
1821 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1822
1823 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1824 "entering" : "leaving"));
1825}
1826
1827static const char *
1828rum_get_rf(int rev)
1829{
1830 switch (rev) {
1831 case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1832 case RT2573_RF_2528: return "RT2528";
1833 case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1834 case RT2573_RF_5226: return "RT5226";
1835 default: return "unknown";
1836 }
1837}
1838
1839static void
1840rum_read_eeprom(struct rum_softc *sc)
1841{
1842 struct ieee80211com *ic = &sc->sc_ic;
1843 uint16_t val;
1844#ifdef RUM_DEBUG
1845 int i;
1846#endif
1847
1848 /* read MAC/BBP type */
1849 rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1850 sc->macbbp_rev = le16toh(val);
1851
1852 /* read MAC address */
1853 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1854
1855 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1856 val = le16toh(val);
1857 sc->rf_rev = (val >> 11) & 0x1f;
1858 sc->hw_radio = (val >> 10) & 0x1;
1859 sc->rx_ant = (val >> 4) & 0x3;
1860 sc->tx_ant = (val >> 2) & 0x3;
1861 sc->nb_ant = val & 0x3;
1862
1863 DPRINTF(("RF revision=%d\n", sc->rf_rev));
1864
1865 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1866 val = le16toh(val);
1867 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1868 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1869
1870 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1871 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1872
1873 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1874 val = le16toh(val);
1875 if ((val & 0xff) != 0xff)
1876 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1877
1878 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1879 val = le16toh(val);
1880 if ((val & 0xff) != 0xff)
1881 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1882
1883 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1884 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1885
1886 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1887 val = le16toh(val);
1888 if ((val & 0xff) != 0xff)
1889 sc->rffreq = val & 0xff;
1890
1891 DPRINTF(("RF freq=%d\n", sc->rffreq));
1892
1893 /* read Tx power for all a/b/g channels */
1894 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1895 /* XXX default Tx power for 802.11a channels */
1896 memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1897#ifdef RUM_DEBUG
1898 for (i = 0; i < 14; i++)
1899 DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1900#endif
1901
1902 /* read default values for BBP registers */
1903 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1904#ifdef RUM_DEBUG
1905 for (i = 0; i < 14; i++) {
1906 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1907 continue;
1908 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1909 sc->bbp_prom[i].val));
1910 }
1911#endif
1912}
1913
1914static int
1915rum_bbp_init(struct rum_softc *sc)
1916{
1917 unsigned int i, ntries;
1918 uint8_t val;
1919
1920 /* wait for BBP to be ready */
1921 for (ntries = 0; ntries < 100; ntries++) {
1922 val = rum_bbp_read(sc, 0);
1923 if (val != 0 && val != 0xff)
1924 break;
1925 DELAY(1000);
1926 }
1927 if (ntries == 100) {
1928 printf("%s: timeout waiting for BBP\n",
1929 device_xname(sc->sc_dev));
1930 return EIO;
1931 }
1932
1933 /* initialize BBP registers to default values */
1934 for (i = 0; i < __arraycount(rum_def_bbp); i++)
1935 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1936
1937 /* write vendor-specific BBP values (from EEPROM) */
1938 for (i = 0; i < 16; i++) {
1939 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1940 continue;
1941 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1942 }
1943
1944 return 0;
1945}
1946
1947static int
1948rum_init(struct ifnet *ifp)
1949{
1950 struct rum_softc *sc = ifp->if_softc;
1951 struct ieee80211com *ic = &sc->sc_ic;
1952 uint32_t tmp;
1953 usbd_status error = 0;
1954 unsigned int i, ntries;
1955
1956 if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1957 if (rum_attachhook(sc))
1958 goto fail;
1959 }
1960
1961 rum_stop(ifp, 0);
1962
1963 /* initialize MAC registers to default values */
1964 for (i = 0; i < __arraycount(rum_def_mac); i++)
1965 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1966
1967 /* set host ready */
1968 rum_write(sc, RT2573_MAC_CSR1, 3);
1969 rum_write(sc, RT2573_MAC_CSR1, 0);
1970
1971 /* wait for BBP/RF to wakeup */
1972 for (ntries = 0; ntries < 1000; ntries++) {
1973 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1974 break;
1975 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1976 DELAY(1000);
1977 }
1978 if (ntries == 1000) {
1979 printf("%s: timeout waiting for BBP/RF to wakeup\n",
1980 device_xname(sc->sc_dev));
1981 goto fail;
1982 }
1983
1984 if ((error = rum_bbp_init(sc)) != 0)
1985 goto fail;
1986
1987 /* select default channel */
1988 rum_select_band(sc, ic->ic_curchan);
1989 rum_select_antenna(sc);
1990 rum_set_chan(sc, ic->ic_curchan);
1991
1992 /* clear STA registers */
1993 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1994
1995 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1996 rum_set_macaddr(sc, ic->ic_myaddr);
1997
1998 /* initialize ASIC */
1999 rum_write(sc, RT2573_MAC_CSR1, 4);
2000
2001 /*
2002 * Allocate xfer for AMRR statistics requests.
2003 */
2004 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2005 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2006 &sc->amrr_xfer);
2007 if (error) {
2008 printf("%s: could not allocate AMRR xfer\n",
2009 device_xname(sc->sc_dev));
2010 goto fail;
2011 }
2012
2013 /*
2014 * Open Tx and Rx USB bulk pipes.
2015 */
2016 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2017 &sc->sc_tx_pipeh);
2018 if (error != 0) {
2019 printf("%s: could not open Tx pipe: %s\n",
2020 device_xname(sc->sc_dev), usbd_errstr(error));
2021 goto fail;
2022 }
2023
2024 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2025 &sc->sc_rx_pipeh);
2026 if (error != 0) {
2027 printf("%s: could not open Rx pipe: %s\n",
2028 device_xname(sc->sc_dev), usbd_errstr(error));
2029 goto fail;
2030 }
2031
2032 /*
2033 * Allocate Tx and Rx xfer queues.
2034 */
2035 error = rum_alloc_tx_list(sc);
2036 if (error != 0) {
2037 printf("%s: could not allocate Tx list\n",
2038 device_xname(sc->sc_dev));
2039 goto fail;
2040 }
2041
2042 error = rum_alloc_rx_list(sc);
2043 if (error != 0) {
2044 printf("%s: could not allocate Rx list\n",
2045 device_xname(sc->sc_dev));
2046 goto fail;
2047 }
2048
2049 /*
2050 * Start up the receive pipe.
2051 */
2052 for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2053 struct rum_rx_data *data;
2054
2055 data = &sc->rx_data[i];
2056
2057 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2058 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2059 error = usbd_transfer(data->xfer);
2060 if (error != USBD_NORMAL_COMPLETION &&
2061 error != USBD_IN_PROGRESS) {
2062 printf("%s: could not queue Rx transfer\n",
2063 device_xname(sc->sc_dev));
2064 goto fail;
2065 }
2066 }
2067
2068 /* update Rx filter */
2069 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2070
2071 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2072 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2073 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2074 RT2573_DROP_ACKCTS;
2075 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2076 tmp |= RT2573_DROP_TODS;
2077 if (!(ifp->if_flags & IFF_PROMISC))
2078 tmp |= RT2573_DROP_NOT_TO_ME;
2079 }
2080 rum_write(sc, RT2573_TXRX_CSR0, tmp);
2081
2082 ifp->if_flags &= ~IFF_OACTIVE;
2083 ifp->if_flags |= IFF_RUNNING;
2084
2085 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2086 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2087 else
2088 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2089
2090 return 0;
2091
2092fail: rum_stop(ifp, 1);
2093 return error;
2094}
2095
2096static void
2097rum_stop(struct ifnet *ifp, int disable)
2098{
2099 struct rum_softc *sc = ifp->if_softc;
2100 struct ieee80211com *ic = &sc->sc_ic;
2101 uint32_t tmp;
2102
2103 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2104
2105 sc->sc_tx_timer = 0;
2106 ifp->if_timer = 0;
2107 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2108
2109 /* disable Rx */
2110 tmp = rum_read(sc, RT2573_TXRX_CSR0);
2111 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2112
2113 /* reset ASIC */
2114 rum_write(sc, RT2573_MAC_CSR1, 3);
2115 rum_write(sc, RT2573_MAC_CSR1, 0);
2116
2117 if (sc->amrr_xfer != NULL) {
2118 usbd_destroy_xfer(sc->amrr_xfer);
2119 sc->amrr_xfer = NULL;
2120 }
2121
2122 if (sc->sc_rx_pipeh != NULL) {
2123 usbd_abort_pipe(sc->sc_rx_pipeh);
2124 }
2125
2126 if (sc->sc_tx_pipeh != NULL) {
2127 usbd_abort_pipe(sc->sc_tx_pipeh);
2128 }
2129
2130 rum_free_rx_list(sc);
2131 rum_free_tx_list(sc);
2132
2133 if (sc->sc_rx_pipeh != NULL) {
2134 usbd_close_pipe(sc->sc_rx_pipeh);
2135 sc->sc_rx_pipeh = NULL;
2136 }
2137
2138 if (sc->sc_tx_pipeh != NULL) {
2139 usbd_close_pipe(sc->sc_tx_pipeh);
2140 sc->sc_tx_pipeh = NULL;
2141 }
2142}
2143
2144static int
2145rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2146{
2147 usb_device_request_t req;
2148 uint16_t reg = RT2573_MCU_CODE_BASE;
2149 usbd_status error;
2150
2151 /* copy firmware image into NIC */
2152 for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2153 rum_write(sc, reg, UGETDW(ucode));
2154
2155 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2156 req.bRequest = RT2573_MCU_CNTL;
2157 USETW(req.wValue, RT2573_MCU_RUN);
2158 USETW(req.wIndex, 0);
2159 USETW(req.wLength, 0);
2160
2161 error = usbd_do_request(sc->sc_udev, &req, NULL);
2162 if (error != 0) {
2163 printf("%s: could not run firmware: %s\n",
2164 device_xname(sc->sc_dev), usbd_errstr(error));
2165 }
2166 return error;
2167}
2168
2169static int
2170rum_prepare_beacon(struct rum_softc *sc)
2171{
2172 struct ieee80211com *ic = &sc->sc_ic;
2173 struct rum_tx_desc desc;
2174 struct mbuf *m0;
2175 int rate;
2176
2177 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2178 if (m0 == NULL) {
2179 aprint_error_dev(sc->sc_dev,
2180 "could not allocate beacon frame\n");
2181 return ENOBUFS;
2182 }
2183
2184 /* send beacons at the lowest available rate */
2185 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2186
2187 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2188 m0->m_pkthdr.len, rate);
2189
2190 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2191 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2192
2193 /* copy beacon header and payload into NIC memory */
2194 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2195 m0->m_pkthdr.len);
2196
2197 m_freem(m0);
2198
2199 return 0;
2200}
2201
2202static void
2203rum_newassoc(struct ieee80211_node *ni, int isnew)
2204{
2205 /* start with lowest Tx rate */
2206 ni->ni_txrate = 0;
2207}
2208
2209static void
2210rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2211{
2212 int i;
2213
2214 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2215 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2216
2217 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2218
2219 /* set rate to some reasonable initial value */
2220 for (i = ni->ni_rates.rs_nrates - 1;
2221 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2222 i--);
2223 ni->ni_txrate = i;
2224
2225 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2226}
2227
2228static void
2229rum_amrr_timeout(void *arg)
2230{
2231 struct rum_softc *sc = arg;
2232 usb_device_request_t req;
2233
2234 /*
2235 * Asynchronously read statistic registers (cleared by read).
2236 */
2237 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2238 req.bRequest = RT2573_READ_MULTI_MAC;
2239 USETW(req.wValue, 0);
2240 USETW(req.wIndex, RT2573_STA_CSR0);
2241 USETW(req.wLength, sizeof(sc->sta));
2242
2243 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2244 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2245 rum_amrr_update);
2246 (void)usbd_transfer(sc->amrr_xfer);
2247}
2248
2249static void
2250rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2251 usbd_status status)
2252{
2253 struct rum_softc *sc = (struct rum_softc *)priv;
2254 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2255
2256 if (status != USBD_NORMAL_COMPLETION) {
2257 printf("%s: could not retrieve Tx statistics - cancelling "
2258 "automatic rate control\n", device_xname(sc->sc_dev));
2259 return;
2260 }
2261
2262 /* count TX retry-fail as Tx errors */
2263 ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2264
2265 sc->amn.amn_retrycnt =
2266 (le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2267 (le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2268 (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
2269
2270 sc->amn.amn_txcnt =
2271 sc->amn.amn_retrycnt +
2272 (le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2273
2274 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2275
2276 callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2277}
2278
2279static int
2280rum_activate(device_t self, enum devact act)
2281{
2282 switch (act) {
2283 case DVACT_DEACTIVATE:
2284 /*if_deactivate(&sc->sc_ic.ic_if);*/
2285 return 0;
2286 default:
2287 return 0;
2288 }
2289}
2290
2291MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2292
2293#ifdef _MODULE
2294#include "ioconf.c"
2295#endif
2296
2297static int
2298if_rum_modcmd(modcmd_t cmd, void *aux)
2299{
2300 int error = 0;
2301
2302 switch (cmd) {
2303 case MODULE_CMD_INIT:
2304#ifdef _MODULE
2305 error = config_init_component(cfdriver_ioconf_rum,
2306 cfattach_ioconf_rum, cfdata_ioconf_rum);
2307#endif
2308 return error;
2309 case MODULE_CMD_FINI:
2310#ifdef _MODULE
2311 error = config_fini_component(cfdriver_ioconf_rum,
2312 cfattach_ioconf_rum, cfdata_ioconf_rum);
2313#endif
2314 return error;
2315 default:
2316 return ENOTTY;
2317 }
2318}
2319