
User Guide
Release 2.2.1

Veronica Berglyd Olsen

Saturday, 27 January 2024 at 15:53

CONTENTS

1 Key Features 3
1.1 Screenshots . 4

2 Overview 7
2.1 Using novelWriter . 7
2.2 Organising Your Projects . 8

3 Getting Started 9
3.1 Installing on Windows . 9
3.2 Installing on Linux . 9
3.3 Installing on MacOS . 11
3.4 Installing from PyPi . 11

4 Tips & Tricks 13
4.1 Managing the Project . 13
4.2 Layout Tricks . 13
4.3 Organising Your Text . 14
4.4 Other Tools . 14

5 Customisations 15
5.1 Spell Check Dictionaries . 15
5.2 Syntax and GUI Themes . 16

6 Glossary 19

7 How it Works 21
7.1 GUI Layout and Design . 21
7.2 Project Layout . 24
7.3 Building the Manuscript . 25
7.4 Project Storage . 26

8 Project Views 27
8.1 The Project Tree . 28
8.2 The Novel Tree . 31
8.3 Project Outline View . 32

9 The Editor and Viewer 35
9.1 Editing a Document . 35
9.2 Viewing a Document . 36
9.3 Search & Replace . 38

i

9.4 Auto-Replace as You Type . 38

10 Formatting Your Text 41
10.1 Syntax Highlighting . 41
10.2 Headings . 42
10.3 Text Paragraphs . 43
10.4 Text Emphasis . 43
10.5 Extended Formatting with Shortcodes . 44
10.6 Comments and Synopsis . 44
10.7 Tags and References . 45
10.8 Paragraph Alignment and Indentation . 45
10.9 Vertical Space and Page Breaks . 46

11 Keyboard Shortcuts 47
11.1 Main Window Shortcuts . 47
11.2 Project Tree Shortcuts . 48
11.3 Document Editor Shortcuts . 48
11.4 Document Viewer Shortcuts . 51

12 Typographical Notes 53
12.1 Special Notes on Symbols . 53

13 Project Format Changes 55
13.1 Format 1.5 Changes . 55
13.2 Format 1.4 Changes . 55
13.3 Format 1.3 Changes . 56
13.4 Format 1.2 Changes . 56
13.5 Format 1.1 Changes . 56
13.6 Format 1.0 Changes . 57

14 Novel Projects 59
14.1 Project Roots . 59
14.2 Project Documents . 62
14.3 Project Settings . 62
14.4 Backup . 64
14.5 Writing Statistics . 64

15 Novel Structure 65
15.1 Importance of Headings . 65

16 Tags and References 67
16.1 Metadata in novelWriter . 67
16.2 How to Use Tags . 68
16.3 How to Use References . 68

17 Building the Manuscript 71
17.1 The Manuscript Build Tool . 71
17.2 Build Settings . 72
17.3 Building Manuscript Documents . 74
17.4 Print and PDF . 75

18 File Locations 77
18.1 Configuration . 77

ii

18.2 Application Data . 77

19 How Data is Stored 79
19.1 Project Structure . 79
19.2 Project Documents . 79
19.3 Project Meta Data . 80

20 Running from Source 83
20.1 Dependencies . 83
20.2 Build and Install from Source . 84
20.3 Building the Translation Files . 84
20.4 Building the Example Project . 85
20.5 Building the Documentation . 85

21 Running Tests 87
21.1 Dependencies . 87
21.2 Simple Test Run . 87
21.3 Advanced Options . 87

Index 89

iii

iv

User Guide, Release 2.2.1

Release Version: 2.2.1
Updated: Saturday, 27 January 2024 at 15:53

novelWriter is an open source plain text editor designed for writing novels assembled from many smaller
text documents. It uses a minimal formatting syntax inspired by Markdown, and adds a meta data syntax
for comments, synopsis, and cross-referencing. It is designed to be a simple text editor that allows for
easy organisation of text and notes, using human readable text files as storage for robustness.

The project storage is suitable for version control software, and also well suited for file synchronisation
tools. All text is saved as plain text files with a meta data header. The core project structure is stored in
a single project XML file. Other meta data is saved as JSON files. See the Project Storage section for
more details.

Any operating system that can run Python 3 and has the Qt 5 libraries should be able to run novelWriter. It
runs fine on Linux, Windows and MacOS, and users have tested it on other platforms as well. novelWriter
can also be run directly from the Python source, or installed from packages or with pip. See Getting
Started for more details.

Useful Links

• Website: https://novelwriter.io

• Documentation: https://docs.novelwriter.io

• Internationalisation: https://crowdin.com/project/novelwriter

• Source Code: https://github.com/vkbo/novelWriter

• Source Releases: https://github.com/vkbo/novelWriter/releases

• Issue Tracker: https://github.com/vkbo/novelWriter/issues

• Feature Discussions: https://github.com/vkbo/novelWriter/discussions

• PyPi Project: https://pypi.org/project/novelWriter

• Social Media: https://fosstodon.org/@novelwriter

CONTENTS 1

https://novelwriter.io
https://docs.novelwriter.io
https://crowdin.com/project/novelwriter
https://github.com/vkbo/novelWriter
https://github.com/vkbo/novelWriter/releases
https://github.com/vkbo/novelWriter/issues
https://github.com/vkbo/novelWriter/discussions
https://pypi.org/project/novelWriter
https://fosstodon.org/@novelwriter

User Guide, Release 2.2.1

2 CONTENTS

CHAPTER

ONE

KEY FEATURES

At its core, novelWriter is a multi-document plain text editor. It uses a markup syntax inspired by Mark-
down to apply simple formatting to the text. It is designed for writing fiction, so the formatting features
available are limited to those relevant for this purpose. It is not suitable for technical writing, and it is
not a full-featured Markdown editor.

Your novel project is organised as a collection of separate plain text documents instead of a single, large
document. The idea is to make it easier to reorganise your project structure without having to cut and
paste text between chapters.

There are two kinds of documents in your project: Novel Documents are documents that are part of your
story. The other kind of documents are Project Notes. These are intended for your notes about your
characters, your world building, and so on.

You can at any point split the individual documents by their headers up into multiple documents, or
merge multiple documents into single documents. This makes it easier to use variations of the Snowflake
method for writing. You can start by writing larger structure-focused documents, like one per act for
instance, and later effortlessly split these up into scenes by their headers.

Below are some key features of novelWriter.

Focus on writing
The aim of the user interface is to let you focus on writing instead of spending time formatting text.
Formatting is therefore limited to a small set of formatting tags for simple things like text emphasis
and paragraph alignment. When you really want to focus on just writing, you can switch the editor
into Focus Mode where only the text editor panel itself is visible, and the project structure view is
hidden away.

Keep an eye on your notes
The main window can optionally show a document viewer to the right of the editor. This view
panel is intended for displaying another scene document, your character notes, plot notes, or any
other document you may need to reference while writing. It is not intended as a preview panel for
the document you’re editing, but if you wish, you can also use it for this purpose.

Organise your documents how you like
You can split your novel project up into as many individual documents as you want to. When you
build the project into a manuscript, they are all glued together in the top-to-bottom order in which
they appear in the project tree. You can use as few text documents as you like, but splitting the
project up into chapters and scenes means you can easily reorder them using the drag-and-drop
feature of the project tree. You can also start out with a few documents and then later split them
into multiple documents based on their headers.

Multi-novel project support
As of novelWriter 2.0, you can have multiple Novel type root folders in a project. This allows

3

https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Markdown
https://www.advancedfictionwriting.com/articles/snowflake-method/

User Guide, Release 2.2.1

you to keep a series of individual novels with the same characters and world building in the same
project, and create manuscripts for them individually.

Keep track of your plot elements
All notes in your project can be assigned a tag that you can reference from any other document or
note. In fact, you can add a new tag under each heading of a note if you need to be able to reference
specific sections of it.

Get an overview of your story
In the Outline View on the main window you can see an outline of all the chapters, scenes, and
sections of your project. If they have any references in them, these are listed in additional columns.
You can also add a synopsis to each chapter or scene, which can be listed here as well. You have
the option to add or remove columns of information from this outline. A subset of the outline
information is also available in the Novel View as an alternative view to the project tree.

Get an overview of your story elements
Under the document viewer panel you will find a series of tabs that shows the different story el-
ements you have created tags for. The tabs are sorted into Characters, Plots, etc, depending on
which categories you are using in your story. This panel can be hidden when you don’t need it to
free up space.

Building your manuscript
Whether you want to assemble a manuscript, or export all your notes, or generate an outline of
your chapters and scenes with a synopsis, you can use the Build Manuscript tool to do so. The
tool lets you select what information you want to include in the generated document, and how it
is formatted. You can send the result to a printer, a PDF, or to an Open Document file that can
be opened by most office type word processors. You can also generate the result as HTML, or
Markdown, both suitable for further conversion to other formats.

1.1 Screenshots

4 Chapter 1. Key Features

User Guide, Release 2.2.1

Fig. 1: novelWriter with light colour theme

Fig. 2: novelWriter with dark colour theme

1.1. Screenshots 5

User Guide, Release 2.2.1

6 Chapter 1. Key Features

CHAPTER

TWO

OVERVIEW

novelWriter is built as a cross-platform application using Python 3 as the programming language, and Qt
5 for the user interface.

novelWriter is built for Linux first, and this is where it works best. However, it also runs fine on Windows
and MacOS due to the cross-platform framework it’s built on. The author of the application doesn’t own
a Mac, so on-going Mac support is dependent on user feedback and user contributions.

Spell checking in novelWriter is provided by a third party library called Enchant. Please see the section
on Spell Check Dictionaries for how to install spell checking languages.

For install instructions, see Getting Started.

2.1 Using novelWriter

In order to use novelWriter effectively, you need to know the basics of how it works. The following
chapters will explain the main principles. It starts with the basics, and gets more detailed as you read on.

How it Works – Essential Information
This chapter explains the basics of how the application works and what it can and cannot do.

Project Views – Recommended Reading
This chapter will give you a more detailed explanation of how you can use the user interface com-
ponents to organise and view your project work.

The Editor and Viewer – Recommended Reading
This chapter will give you a more detailed explanation of how the text editor and viewer work.

Formatting Your Text – Essential Information
This chapter covers how you should format your text. The editor is plain text, so text formatting re-
quires some basic markup. The structure of your novel is also inferred from how you use headings.
Tags and references are implemented by special keywords.

Keyboard Shortcuts – Optional / Lookup
This chapter lists all the keyboard shortcuts in novelWriter and what they do. Most of the shortcuts
are also listed next to their menu entries inside the app, or in tool tips. This chapter is mostly for
reference.

Typographical Notes – Optional
This chapter gives you an overview of the special typographical symbols available in novelWriter.
The auto-replace feature can handle the insertion of standard quote symbols for your language, and
other special characters. If you use any symbols aside from these, their intended use is explained
here.

7

https://www.python.org/
https://www.qt.io/
https://www.qt.io/
https://abiword.github.io/enchant/

User Guide, Release 2.2.1

Project Format Changes – Optional
This chapter is more technical and has an overview of changes made to the way your project data is
stored. The format has changed a bit from time to time, and sometimes the changes require that you
make small modifications to your project. Everything you need to know is listed in this chapter.

2.2 Organising Your Projects

In addition to managing a collection of plain text files, novelWriter can interpret and map the structure
of your novel and show you additional information about its flow and content. In order to take advantage
of these features, you must structure your text in a specific way and add some meta data for it to extract.

Novel Projects – Essential Information
This chapter explains how you organise the content of your project, and how to set up automated
backups of your work.

Novel Structure – Essential Information
This chapter covers the way your novel’s structure is encoded into the text documents. It explains
how the different levels of headings are used, and some special formatting for different kinds of
headings.

Tags and References - Recommended Reading
This chapter explains how you organise your notes, and how the Tags and References system works.
This system lets you cross-link your documents in your project, and display these references in the
application interface.

Building the Manuscript - Recommended Reading
This chapter explains how the Manuscript Build tool works, how you can control the way chapter
titles are formatted, and how scene and section breaks are handled.

8 Chapter 2. Overview

CHAPTER

THREE

GETTING STARTED

Ready-made packages and installers for novelWriter are available for all major platforms, including
Linux, Windows and MacOS. See below for install instructions for each platform.

You can also install novelWriter from the Python Package Index (PyPi). See Installing from PyPi. In-
stalling from PyPi does not set up icon launchers, so you will either have to do this yourself, or start
novelWriter from the command line.

Spell checking in novelWriter is provided by a third party library called Enchant. Generally, it should
pull dictionaries from your operating system automatically. However, on Windows they must be installed
manually. See Spell Check Dictionaries for more details.

3.1 Installing on Windows

You can install novelWriter with both Python and library dependencies embedded using the Windows
Installer (setup.exe) file from the main website, or from the Releases page on GitHub. Installing it should
be straightforward.

If you have any issues, try uninstalling the previous version and making a fresh install. If you already had
a version installed via a different method, you should uninstall that first as having multiple installations
has been known to cause problems.

Note: The novelWriter installer is not signed because Microsoft doesn’t currently provide a way for
non-profit open source projects to properly sign their installers. The novelWriter project doesn’t have the
funding to pay for commercial software signing certificates. You will therefore see an additional warning
about this when you download the installer.

3.2 Installing on Linux

A Debian package can be downloaded from the main website, or from the Releases page on GitHub. This
package should work on both Debian, Ubuntu and Linux Mint, at least.

If you prefer, you can also add the novelWriter repository on Launchpad to your package manager.

9

https://abiword.github.io/enchant/
https://novelwriter.io
https://github.com/vkbo/novelWriter/releases
https://github.com/vkbo/novelWriter
https://novelwriter.io
https://github.com/vkbo/novelWriter/releases
https://github.com/vkbo/novelWriter

User Guide, Release 2.2.1

3.2.1 Ubuntu

You can add the Ubuntu PPA and install novelWriter with the following commands.

sudo add-apt-repository ppa:vkbo/novelwriter
sudo apt update
sudo apt install novelwriter

If you want the Pre-Release PPA instead, add the ppa:vkbo/novelwriter-pre repository.

3.2.2 Debian and Mint

Since this is a pure Python package, the Launchpad PPA can in principle also be used on Debian or Mint.
However, the above command will fail to add the signing key, as it is Ubuntu-specific.

Instead, run the following commands to add the repository and key:

sudo gpg --no-default-keyring --keyring /usr/share/keyrings/novelwriter-ppa-
→˓keyring.gpg --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys␣
→˓F19F1FCE50043114
echo "deb [signed-by=/usr/share/keyrings/novelwriter-ppa-keyring.gpg] http://
→˓ppa.launchpad.net/vkbo/novelwriter/ubuntu jammy main" | sudo tee /etc/apt/
→˓sources.list.d/novelwriter.list

Then run the update and install commands as for Ubuntu:

sudo apt update
sudo apt install novelwriter

Note: You may need to use the Ubuntu 20.04 (focal) packages for Debian 11 or earlier. The newer
Ubuntu packages use a different compression algorithm that may not be supported.

Tip: If you get an error message like gpg: failed to create temporary file when importing
the key from the Ubuntu keyserver, try creating the folder it fails on, and import the key again:

sudo mkdir /root/.gnupg/

3.2.3 AppImage Releases

For other Linux distros than the ones mentioned above, the primary option is AppImage. These are
completely standalone images for the app that include the necessary environment to run novelWriter.
They can of course be run on any Linux distro, if you prefer this to native packages.

Note: novelWriter generally don’t support Python versions that have reached end of life. If your Linux
distro still uses older Python versions and novelWriter won’t run, you may want to try the AppImage
instead.

10 Chapter 3. Getting Started

https://launchpad.net/~vkbo/+archive/ubuntu/novelwriter
https://launchpad.net/~vkbo/+archive/ubuntu/novelwriter-pre
https://appimage.org/

User Guide, Release 2.2.1

3.3 Installing on MacOS

You can install novelWriter with both its Python and library dependencies embedded using the DMG
application image file from the main website, or from the Releases page on GitHub. Installing it should
be straightforward.

• Download the DMG file and open it. Then drag the novelWriter icon to the Applications folder on
the right. This will install it into your Applications.

• The first time you try to launch it, it will say that the bundle cannot be verified, simply press the
Open button to add an exception.

• If you are not presented with an Open button in the dialog launch the application again by right
clicking on the application in Finder and selecting Open from the context menu.

The context menu can also be accessed by option-clicking if you have a one button mouse. This is done
by holding down the option key on your keyboard and clicking on the application in Finder.

Note: The novelWriter DMG is not signed because Apple doesn’t currently provide a way for non-profit
open source projects to properly sign their installers. The novelWriter project doesn’t have the funding
to pay for commercial software signing certificates.

3.4 Installing from PyPi

novelWriter is also available on the Python Package Index, or PyPi. This install method works on all
supported operating systems.

To install from PyPi you must first have the python and pip commands available on your system. You
can download Python from python.org. It is recommended that you install the latest version. If you are
on Windows, also make sure to select the “Add Python to PATH” option during installation.

To install novelWriter from PyPi, use the following command:

pip install novelwriter

To upgrade an existing installation, use:

pip install --upgrade novelwriter

When installing via pip, novelWriter can be launched from command line with:

novelwriter

Make sure the install location for pip is in your PATH variable. This is not always the case by default,
and then you may get a “Not Found” error when running the novelwriter command.

3.3. Installing on MacOS 11

https://novelwriter.io
https://github.com/vkbo/novelWriter/releases
https://github.com/vkbo/novelWriter
https://pypi.org/project/novelWriter/
https://www.python.org/downloads/

User Guide, Release 2.2.1

12 Chapter 3. Getting Started

CHAPTER

FOUR

TIPS & TRICKS

This is a list of hopefully helpful little tips on how to get the most out of novelWriter.

Note: This section will be expanded over time. If you would like to have something added, feel free to
contribute, or start a discussion on the project’s Discussions Page.

4.1 Managing the Project

Merge Multiple Documents Into One

If you need to merge a set of documents in your project into a single document, you can achieve this by
first making a new folder for just that purpose, and drag all the files you want merged into this folder.
Then you can right click the folder, select Transform and Merge Documents in Folder.

In the dialog that pops up, the documents will be in the same order as in the folder, but you can also
rearrange them here of you wish. See Splitting and Merging Documents for more details.

4.2 Layout Tricks

Create a Simple Table

The formatting tools available in novelWriter don’t allow for complex structures like tables. However,
the editor does render tabs in a similar way that regular word processors do. You can set the width of a
tab in Preferences.

The tab key should have the same distance in the editor as in the viewer, so you can align text in columns
using the tab key, and it should look the same when viewed next to the editor.

This is most suitable for your notes, as the result in exported documents cannot be guaranteed to match.

13

https://github.com/vkbo/novelWriter/discussions

User Guide, Release 2.2.1

4.3 Organising Your Text

Add Introductory Text to Chapters

Sometimes chapters have a short preface, like a brief piece of text or a quote to set the stage before the
first scene begins.

If you add separate files for chapters and scenes, the chapter file is the perfect place to add such text.
Separating chapter and scene files also allows you to make scene files child documents of the chapter
(added in novelWriter 2.0).

Distinguishing Soft and Hard Scene Breaks

Depending on your writing style, you may need to separate between soft and hard scene breaks within
chapters. Like for instance if you switch point-of-view character often.

In such cases you may want to use the scene heading for hard scene breaks and section headings for
soft scene breaks. the Build Manuscript tool will let you add separate formatting for the two when you
generate your manuscript. You can for instance add the common “* * *” for hard breaks and select to
hide section breaks, which will just insert an empty paragraph in their place. See Build Settings for more
details.

4.4 Other Tools

Convert Project to/from yWriter Format

There is a tool available that lets you convert a yWriter project to a novelWriter project, and vice versa.

The tool is available at peter88213.github.io/yw2nw

14 Chapter 4. Tips & Tricks

http://spacejock.com/yWriter7.html
https://peter88213.github.io/yw2nw/

CHAPTER

FIVE

CUSTOMISATIONS

There are a few ways you can customise novelWriter yourself. Currently, you can add new GUI themes,
your own syntax themes, and install additional dictionaries.

5.1 Spell Check Dictionaries

novelWriter uses Enchant as the spell checking tool. Depending on your operating system, it may or may
not load all installed spell check dictionaries automatically.

5.1.1 Linux and MacOS

On Linux and MacOS, you generally only have to install hunspell, aspell or myspell dictionaries on your
system like you do for other applications. See your distro or OS documentation for how to do this. These
dictionaries should show up as available spell check languages in novelWriter.

5.1.2 Windows

For Windows, English is included with the installation. For other languages you have to download and
add dictionaries yourself.

Install Tool

A small tool to assist with this can be found under Tools > Add Dictionaries. It will import spell checking
dictionaries from Free Office or Libre Office extensions. The dictionaries are then installed in the install
location for the Enchant library.

Manual Install

If you prefer to do this manually or want to use a different source than the ones mentioned above, You
need to get compatible dictionary files for your language. You need two files files ending with .aff and
.dic. These files must then be copied to the following location:

C:\Users\<USER>\AppData\Local\enchant\hunspell

This assumes your user profile is stored at C:\Users\<USER>. The last one or two folders may not exist,
so you may need to create them.

You can find the various dictionaries on the Free Desktop website.

15

https://abiword.github.io/enchant
https://cgit.freedesktop.org/libreoffice/dictionaries/tree/

User Guide, Release 2.2.1

Note: The Free Desktop link points to a repository, and what may look like file links inside the dictionary
folder are actually links to web pages. If you right-click and download those, you get HTML files, not
dictionaries!

In order to download the actual dictionary files, right-click the “plain” label at the end of each line and
download that.

5.2 Syntax and GUI Themes

Adding your own GUI and syntax themes is relatively easy, although it requires that you manually edit
config files with colour values. The themes are defined by simple plain text config files with meta data
and colour settings.

In order to make your own versions, first copy one of the existing files to your local computer and modify
it as you like.

• The existing syntax themes are stored in novelwriter/assets/syntax.

• The existing GUI themes are stored in novelwriter/assets/themes.

• The existing icon themes are stored in novelwriter/assets/icons.

Remember to also change the name of your theme by modifying the name setting at the top of the file,
otherwise you may not be able to distinguish them in Preferences.

For novelWriter to be able to locate the custom theme files, you must copy them to the Application Data
location in your home or user area. There should be a folder there named syntax for syntax themes, just
themes for GUI themes, and icons for icon themes. These folders are created the first time you start
novelWriter.

Once the files are copied there, they should show up in Preferences with the label you set as name inside
the file.

New in version 2.0: The icontheme value was added to GUI themes. Make sure you set this value in
existing custom themes. Otherwise, novelWriter will try to guess your icon theme, and may not pick the
most suitable one.

5.2.1 Custom GUI and Icons Theme

A GUI theme .conf file consists of the following settings:

[Main]
name = My Custom Theme
description = A description of my custom theme
author = Jane Doe
credit = John Doe
url = https://example.com
license = CC BY-SA 4.0
licenseurl = https://creativecommons.org/licenses/by-sa/4.0/
icontheme = typicons_light

(continues on next page)

16 Chapter 5. Customisations

https://github.com/vkbo/novelWriter/tree/main/novelwriter/assets/syntax
https://github.com/vkbo/novelWriter/tree/main/novelwriter/assets/themes
https://github.com/vkbo/novelWriter/tree/main/novelwriter/assets/icons

User Guide, Release 2.2.1

(continued from previous page)

[Palette]
window = 100, 100, 100
windowtext = 100, 100, 100
base = 100, 100, 100
alternatebase = 100, 100, 100
text = 100, 100, 100
tooltipbase = 100, 100, 100
tooltiptext = 100, 100, 100
button = 100, 100, 100
buttontext = 100, 100, 100
brighttext = 100, 100, 100
highlight = 100, 100, 100
highlightedtext = 100, 100, 100
link = 100, 100, 100
linkvisited = 100, 100, 100

[GUI]
statusnone = 100, 100, 100
statussaved = 100, 100, 100
statusunsaved = 100, 100, 100

In the Main section you must at least define the name and icontheme settings. The icontheme settings
should correspond to one of the internal icon themes, either typicons_light or typicons_dark, or
to an icon theme in your custom icons directory. The setting must match the icon theme’s folder name.

The Palette values correspond to the Qt enum values for QPalette::ColorRole, see the Qt documentation
for more details. The colour values are RGB numbers on the format r, g, b where each is an integer
from to 255. Omitted values are not loaded and will use default values.

5.2.2 Custom Syntax Theme

A syntax theme .conf file consists of the following settings:

[Main]
name = My Syntax Theme
author = Jane Doe
credit = John Doe
url = https://example.com
license = CC BY-SA 4.0
licenseurl = https://creativecommons.org/licenses/by-sa/4.0/

[Syntax]
background = 255, 255, 255
text = 0, 0, 0
link = 0, 0, 0
headertext = 0, 0, 0
headertag = 0, 0, 0
emphasis = 0, 0, 0
straightquotes = 0, 0, 0

(continues on next page)

5.2. Syntax and GUI Themes 17

https://doc.qt.io/qt-5.15/qpalette.html#ColorRole-enum

User Guide, Release 2.2.1

(continued from previous page)

doublequotes = 0, 0, 0
singlequotes = 0, 0, 0
hidden = 0, 0, 0
shortcode = 0, 0, 0
keyword = 0, 0, 0
value = 0, 0, 0
spellcheckline = 0, 0, 0
errorline = 0, 0, 0
replacetag = 0, 0, 0
modifier = 0, 0, 0

In the Main section, you must define at least the name setting. The Syntax colour values are RGB numbers
of the format r, g, b where each is an integer from to 255. Omitted values default to black, except
background which defaults to white,

New in version 2.2: The shortcode syntax colour entry was added, so you need to update your custom
themes if you made any before version 2.2.

18 Chapter 5. Customisations

CHAPTER

SIX

GLOSSARY

Context Menu
A context menu is a menu that pops up when you right click something in the user interface. In
novelWriter, you can often also open a context menu by pressing the keyboard shortcut Ctrl+..

Headings
Each level of headings in Novel Documents have a specific meaning in terms of the structure of the
story. That is, they determine what novelWriter considers a partition, a chapter, a scene or a text
section. For Project Notes, the header levels don’t matter. For more details on headings in novel
documents, see Importance of Headings.

Keyword
A keyword in novelWriter is a special command you put in the text of your documents. They are
not standard Markdown, but are used in novelWriter to add information that is interpreted by the
application. For instance, keywords are used for tags and references.

Keywords must always be on their own line, and the first character of the line must always be the
@ character. The keyword must also always be followed by a : character, and the values passed to
the command are added after this, separated by commas.

Novel Documents
These are documents that are created under a “Novel” root folder. They behave differently than
Project Notes, and have some more restrictions. For instance, they can not exist in folders intended
only for project notes. See the Novel Structure chapter for more details.

Project Index
The project index is a record of all headings in a project, with all their meta data like synopsis
comments, tags and references. The project index is kept up to date automatically, but can also be
regenerated manually from the Tools menu or by pressing F9.

Project Notes
Project Notes are unrestricted documents that can be placed anywhere in your project. You should
not use these documents for story elements, only for notes. Project notes are the source files used
by the Tags and References system. See the Tags and References chapter for more details on how
to use them.

Reference
A reference is one of a set of keywords that can be used to link to a tag in another document. The
reference keywords are specific to the different root folder types. A full overview is available in
the Tags and References chapter.

Root Folder
A “Root Folder” is a top level folder of the project tree in novelWriter. Each type of root folder has
a specific icon to identify it. For an overview of available root folder types, see Project Roots.

19

User Guide, Release 2.2.1

Tag
A tag is a user defined value assigned as a tag to a section of your Project Notes. It is optional,
and can be defined once per heading. It is set using the keyword syntax @tag: value, where
value is the user defined part. Each tag can be referenced in another file using one of the reference
keywords. See Tags and References chapter for more details.

20 Chapter 6. Glossary

CHAPTER

SEVEN

HOW IT WORKS

The main features of novelWriter are listed in the Key Features chapter. In this chapter, we go into
some more details on how they are implemented. This is intended as an overview. Later on in this
documentation, these features will be covered in more detail.

7.1 GUI Layout and Design

The user interface of novelWriter is intended to be as minimalistic as practically possible, while at the
same time provide useful features needed for writing a novel.

The main window does not have an editor toolbar like many other applications do. This reduces clutter,
and since the documents are formatted with style tags, it is more or less redundant.

Most formatting features supported are available through convenient keyboard shortcuts. They are also
available in the main menu, so you don’t have to look up formatting codes every time you need them. For
reference, a list of all shortcuts can be found in the Keyboard Shortcuts chapter.

Note: novelWriter is not intended to be a full office type word processor. It doesn’t support images,
links, tables, and other complex structures and objects often needed for such documents. Formatting is
limited to headers, emphasis, text alignment, and a few other simple features.

On the left side of the main window, you will find a sidebar. This bar has buttons for the standard views
you can switch between, a quick link to the Build Manuscript tool, and a set of project-related tools and
quick access to settings at the bottom.

New in version 2.2: A number of new formatting options were added in 2.2 to allow for some special
formatting cases. At the same time, a small formatting toolbar was added in the editor. It is hidden by
default, but can be opened by pressing the three dots icon in the top right corner.

7.1.1 Project Tree and Editor View

When in Project Tree View mode, the main work area of the main window is split in two, or optionally
three, panels. The left-most panel contains the project tree and all the documents in your project. The
second panel is the document editor.

An optional third panel on the right contains a document viewer which can view any document in your
project independently of what is open in the document editor. This panel is not intended as a preview
window, although you can use it for this purpose if you wish as it will apply the formatting tags you have

21

User Guide, Release 2.2.1

Fig. 1: A screenshot of the Project Tree and Editor View.

specified. The main purpose of the viewer is for viewing your notes next to your editor while you’re
writing.

The editor also has a Focus Mode you can toggle either from the menu, from the icon in the editor’s
header, or by pressing F8. When Focus Mode is enabled, all the user interface elements other than the
document editor itself are hidden away.

7.1.2 Novel Tree and Editor View

When in Novel Tree View mode, the project tree is replaced by an overview of your novel structure for a
specific Novel root folder. Instead of showing individual documents, the tree now shows all headings of
your novel text. This includes multiple headings within the same document.

Each heading is indented according to the heading level. You can open and edit your novel documents
from this view as well. All headings contained in the currently open document should be highlighted in
the view to indicate which ones belong together in the same document.

If you have multiple Novel root folders, the header of the novel view becomes a dropdown box. You can
then switch between them by clicking the Outline of . . . text. You can also click the novel icon button
next to it.

Generally, the novel view should update when you make changes to the novel structure, including edits
of the current document in the editor. The information is only updated when the automatic save of the
document is triggered, or you manually press Ctrl+S to save changes. (You can adjust the auto-save
interval in Preferences.) You can also regenerate the whole novel view by pressing the refresh button at
the top of the side panel.

22 Chapter 7. How it Works

User Guide, Release 2.2.1

Fig. 2: A screenshot of the Novel Tree View.

It is possible to show an optional third column in the novel view, The settings are available from the menu
button in the toolbar.

If you click the arrow icon to the right of each item, a tooltip will pop out showing you all the meta data
collected for that heading.

7.1.3 Novel Outline View

When in Novel Outline View mode, the tree, editor and viewer will be replaced by a large table that shows
the entire novel structure with all the tags and references listed. Pretty much all collected meta data is
available here in different columns.

You can select which novel root folder to display from the dropdown box, and you can select which
columns to show or hide from the menu button. You can also rearrange the columns by drag and drop.
The app will remember your column order and size between sessions, and for each individual project.

7.1. GUI Layout and Design 23

User Guide, Release 2.2.1

Fig. 3: A screenshot of the Novel Outline View.

7.1.4 Colour Themes

By default, novelWriter will use the colour theme provided by the Qt library, which is determined by
the Fusion style setting. You can also choose between a standard dark and light theme that have neutral
colours from Preferences. Other colour themes are also available. More themes can be contributed to
novelWriter on GitHub.

Switching the GUI colour theme does not affect the colours of the editor and viewer. They have separate
colour themes called Editor Themes. They are separated because there are a lot more options to choose
from for the editor and viewer.

Note: If you switch to dark mode on the GUI, you should also switch editor theme to match, otherwise
icons may be hard to see in the editor and viewer.

7.2 Project Layout

This is a brief introduction to how you structure your writing projects. All of this will be covered in more
detail later.

The main point of novelWriter is that you are free to organise your project documents as you wish into
sub-folders or sub-documents, and split the text between these documents in whatever way suits you. All
that matters to novelWriter is the linear order the documents appear at in the project tree (top to bottom).
The chapters, scenes and sections of the novel are determined by the headings within those documents.

The four heading levels (H1 to H4) are treated as follows:

• H1 is used for the novel title, and for partitions.

• H2 is used for chapter tiles.

• H3 is used for scene titles – optionally replaced by separators.

• H4 is for section titles within scenes, if such granularity is needed.

24 Chapter 7. How it Works

https://doc.qt.io/qt-6/gallery.html

User Guide, Release 2.2.1

Fig. 4: An illustration of how header levels correspond to the novel structure.

The project tree will select an icon for the document based on the first heading in it.

This header level structure is only taken into account for novel documents. For project notes, the header
levels have no structural meaning, and you are free to use them however you want. See Novel Structure
and Tags and References for more details.

New in version 2.0: You can add documents as child items of other documents. This is often more useful
than adding folders, since you anyway may want to have the chapter heading in a separate document from
your individual scene documents so that you can rearrange scene documents freely without affecting
chapter placement.

7.3 Building the Manuscript

The project can at any time be assembled into a range of different formats through the Build Manuscript
tool. Natively, novelWriter supports Open Document, HTML5, and various flavours of Markdown.

The HTML5 format is suitable for conversion by a number of other tools like Pandoc, or for importing into
word processors if the Open Document format isn’t suitable. The Open Document format is supported
by most Office type applications. In addition, printing is also possible. Print to PDF is available from
the print dialog.

In addition, you can export the content of the project to a JSON file. This is useful if you want to write
your own custom processing script in for instance Python, as the entire novel can be read into a Python
dictionary with a couple of lines of code. The JSON file can be populated with either HTML formatted
text, or with the raw text as typed into the novel documents.

See Building the Manuscript for more details.

New in version 2.1: You can now define multiple build definitions in the Build Manuscript tool. This
allows you to define specific settings for various types of draft documents, outline documents, and
manuscript formats. See Building the Manuscript for more details.

7.3. Building the Manuscript 25

https://en.wikipedia.org/wiki/OpenDocument
https://pandoc.org/

User Guide, Release 2.2.1

7.4 Project Storage

The files of a novelWriter project are stored in a dedicated project folder. The project structure is kept in
a file at the root of this folder called nwProject.nwx. All the document files and associated meta data is
stored in other folders below the project folder. For more technical details about what all the files mean
and how they’re organised, see the How Data is Stored section.

This way of storing data was chosen for several reasons.

Firstly, all the text you add to your project is saved directly to your project folder in separate files. Only
the project structure and the text you are currently editing is stored in memory at any given time, which
means there is a smaller risk of losing data if the application or your computer crashes.

Secondly, having multiple small files means it is very easy to synchronise them between computers with
standard file synchronisation tools.

Thirdly, if you use version control software to track the changes to your project, the file formats used for
the files are well suited. Also the JSON documents have line breaks and indents, which makes it easier
to track them with version control software.

Note: Since novelWriter has to keep track of a bunch of files and folders when a project is open, it may
not run well on some virtual file systems. A file or folder must be accessible with exactly the path it was
saved or created with. An example where this is not the case is the way Google Drive is mapped on Linux
Gnome desktops using gvfs/gio.

Caution: You should not add additional files to the project folder yourself. Nor should you, as a rule,
manually edit files within it. If you really must manually edit the text files, e.g. with some automated
task you want to perform, you need to rebuild the Project Index when you open the project again.

Editing text files in the content folder is less risky as these are just plain text. Editing the main
project XML file, however, may make the project file unreadable and you may crash novelWriter and
lose project structure information and project settings.

26 Chapter 7. How it Works

CHAPTER

EIGHT

PROJECT VIEWS

This chapter covers in more detail the different project views available in novelWriter.

Fig. 1: The Project Tree as it appears when loading a sample project.

27

User Guide, Release 2.2.1

8.1 The Project Tree

The main window contains a project tree in the left-most panel. It shows the entire structure of the project,
and has four columns.

Column 1
The first column shows the icon and label of each folder, document, or note in your project. The
label is not the same as the title you set inside the document. However, the document’s label will
appear in the header above the document text itself so you know where in the project an open
document belongs. The icon is selected based on the type of item, and for novel documents, the
level of the first header in the document text.

Column 2
The second column shows the word count of the document, or the sum of words of the child items
for folders and documents with sub-documents. If the counts seem incorrect, they can be updated
by rebuilding the project index from the Tools menu, or by pressing F9.

Column 3
The third column indicates whether the document is considered active or inactive in the project.
You can use this flag to indicate that a document is still in the project, but should not be considered
an active part of it. When you run the Build Manuscript tool, you can include or exclude documents
based on this flag. You can change this value from the context menu.

Column 4
The fourth column shows the user-defined status or importance labels you’ve assigned to each
project item. See Document Importance and Status for more details on how to uses these labels.
You can change these labels from the context menu.

Right-clicking an item in the project tree will open a context menu under the cursor, displaying a selection
of actions that can be performed on the selected item.

At the top of the tree, you will find a set of buttons.

• The first button is a quick links button that will show you a dropdown menu of all the root folders
in your project. Selecting one will move to that position in the tree. You can also activate this
menu by pressing Ctrl+L.

• The next two buttons can be used to move items up and down in the project tree. This is the only
way to move root folders.

• The next button opens a dropdown menu for adding new items to the tree. This includes root
folders. You can also activate this dropdown menu by pressing Ctrl+N.

• The last button is a menu of further actions you can apply to the project tree.

Below the project tree you will find a small details panel showing the full information of the currently
selected item. This panel also includes the latest paragraph and character counts in addition to the word
count.

Tip: If you want to set the label of a document to be the same as a header within it, you can right-click a
header in the document when it is open in the editor and select Set as Document Name from the context
menu.

28 Chapter 8. Project Views

User Guide, Release 2.2.1

8.1.1 Splitting and Merging Documents

Under the Transform submenu in the context menu of an item in the project tree, you will find several
options on how to change a document or folder. This includes changing between document and note, but
also splitting them into multiple documents, or merging child items into a single document.

Splitting Documents

Fig. 2: The Split Document dialog.

The Split Document by Header option will open a dialog that allows you to split the selected document
into multiple new documents based on the headings it contains. You can select at which heading level
the split is to be performed from the dropdown box. The list box will preview which headings will be
split into new documents.

You are given the option to create a folder for these new documents, and whether or not to create a
hierarchy of documents. That is, put sections under scenes, and scenes under chapters.

The source document is not deleted in the process, but you have the option to let the tool move the source
document to the Trash folder.

8.1. The Project Tree 29

User Guide, Release 2.2.1

Merging Documents

Fig. 3: The Merge Documents dialog.

You have two options for merging documents that are child elements of another document. You can either
Merge Child Items into Self and Merge Child Items into New. The first option will pull all content of child
items and merge them into the parent document, while the second option will create a new document in
the process.

When merging documents in a folder, you only have the latter process is possible, so only the choice
Merge Documents in Folder is available.

In either case, the Merge Documents dialog will let you exclude documents you don’t want to include,
and it also lets you reorder them if you wish.

8.1.2 Document Importance and Status

Each document or folder in your project can have either a “Status” or “Importance” flag set. These are
flags that you control and define yourself. novelWriter doesn’t do anything with them at all. To modify
the labels, go to their respective tabs in Project Settings.

The “Status” flag is intended to tag a novel document as for instance a draft or as completed, and the
“Importance” flag is intended to tag character notes, or other project notes, as for instance a main, major,
or minor character or story element.

Whether a document uses a “Status” or “Importance” flag depends on which root folder it lives in. If
it’s in a Novel folder, it uses the “Status” flag, otherwise it uses an “Importance” flag. Some folders, like
Trash and Archive allow both.

30 Chapter 8. Project Views

User Guide, Release 2.2.1

8.1.3 Project Tree Drag & Drop

The project tree allows drag & drop to a certain extent to allow you to reorder your documents and folders.
Moving a document in the project tree will affect the text’s position when you assemble your manuscript
in the Manuscript Build tool.

New in version 2.2: You can now select multiple items in the project tree by holding down the Ctrl or
Shift key while selecting items.

You can drag and drop documents and regular folders, but not root folders. If you select multiple items,
they can only be dragged and dropped if they are siblings. That is, they have the same parent item in the
project. This is due to the way drag and drop is implemented in the user interface framework novelWriter
is built upon.

Documents and their folders can be rearranged freely within their root folders. If you move a Novel
document out of a Novel folder, it will be converted to a project note. Notes can be moved freely between
all root folders, but keep in mind that if you move a note into a Novel root folder, its “Importance” setting
will be switched with a “Status” setting. See Document Importance and Status. The old value will not
be overwritten though, and should be restored if you move it back at some point.

Root folders in the project tree cannot be dragged and dropped at all. If you want to reorder them, you
can move them up or down with respect to each other from the arrow buttons at the top of the project
tree, or by pressing Ctrl+Shift+Up or Ctrl+Shift+Down when they are selected.

8.2 The Novel Tree

Fig. 4: A screenshot of the Novel Tree View.

8.2. The Novel Tree 31

User Guide, Release 2.2.1

An alternative way to view the project structure is the novel tree. You can switch to this view by selecting
the Novel Tree View button in the sidebar. This view is a simplified version of the view in the Outline
View. It is convenient when you want to browse the structure of the story itself rather than the document
files.

Note: You cannot reorganise the entries in the novel tree, or add any new documents, as that would
imply restructuring the content of the document files themselves. Any such editing must be done in the
project tree. However, you can add new headings to existing documents, or change references, which will
be updated in this view when the document is saved.

8.3 Project Outline View

Fig. 5: A screenshot of the Novel Outline View.

The project’s Outline View is available as another view option from the sidebar. The outline provides an
overview of the novel structure, displaying a tree hierarchy of the elements of the novel, that is, the level
1 to 4 headings representing partitions, chapters, scenes and sections.

The document containing the heading can also be displayed as a separate column, as well as the line
number where the heading is defined. Double-clicking an entry will open the corresponding document
in the editor and switch to Project Tree View mode.

You can select which novel folder to display from the dropdown menu. You can optionally also choose
to show a combination of all novel folders.

Note: Since the internal structure of the novel does not depend directly on the folder and document
structure of the project tree, this view will not necessarily look the same, depending on how you choose
to organise your documents. See the Novel Structure page for more details.

Various meta data and information extracted from tags can be displayed in columns in the outline. A
default set of such columns is visible, but you can turn on or off more columns from the menu button in

32 Chapter 8. Project Views

User Guide, Release 2.2.1

the toolbar. The order of the columns can also be rearranged by dragging them to a different position.
You column settings are saved between sessions on a per-project basis.

Note: The Title column cannot be disabled or moved.

The information viewed in the outline is based on the project index. While novelWriter does its best to
keep the index up to date when contents change, you can always rebuild it manually by pressing F9 if
something isn’t right.

The outline view itself can be regenerated by pressing the refresh button. By default, the content is
refreshed each time you switch to this view.

The Synopsis column of the outline view takes its information from a specially formatted comment. See
Comments and Synopsis.

8.3. Project Outline View 33

User Guide, Release 2.2.1

34 Chapter 8. Project Views

CHAPTER

NINE

THE EDITOR AND VIEWER

This chapter covers in more detail how the document editor and viewer panels work.

9.1 Editing a Document

Fig. 1: A screenshot of the Document Editor panel.

To edit a document, double-click it in the project tree, or press the Return key while having it selected.
This will open the document in the document editor. The editor uses a Markdown-like syntax for some
features, and a novelWriter-specific syntax for others. The syntax format is described in the Formatting
Your Text chapter.

35

User Guide, Release 2.2.1

The editor has a maximise button (toggles the Focus Mode) and a close button in the top–right corner.
On the top–left side you will find a tools button that opens a toolbar with a few buttons for applying text
formatting, and a search button to open the search dialog.

Both the document editor and viewer will show the label of the currently open document in the header
at the top of the edit or view panel. Optionally, the full project path to the document can be shown. This
can be set in Preferences.

Tip: Clicking on the document title bar will select the document in the project tree and thus reveal its
location there, making it easier to find in a large project.

Any references in the editor can be opened in the viewer by moving the cursor to the label and pressing
Ctrl+Return. You can also control-click them with your mouse.

9.1.1 Editor Auto-Completer

If you type the character @ on a new line, a context menu will appear showing the different available
keywords. The list will shorten as you type. Once a keyword command has been selected or typed, the
editor may suggest further content based on your project content. See The References Auto-Completer
for more details.

New in version 2.2: The auto-completer feature was added.

9.2 Viewing a Document

Any document in the project tree can also be viewed in parallel in a right hand side document viewer. To
view a document, press Ctrl+R, or select View Document in the menu or context menu. If you have a
middle mouse button, middle-clicking on the document will also open it in the viewer.

The document viewed does not have to be the same document as the one currently being edited. However,
If you are viewing the same document, pressing Ctrl+R again will update the document with your latest
changes. You can also press the reload button in the top–right corner of the viewer panel, next to the
close button, to achieve the same thing.

In the viewer references become clickable links. Clicking them will replace the content of the viewer
with the content of the document the reference points to.

The document viewer keeps a history of viewed documents, which you can navigate with the arrow
buttons in the top–left corner of the viewer. If your mouse has backward and forward navigation buttons,
these can be used as well. They work just like the backward and forward features in a browser.

At the bottom of the view panel there is a References panel. (If it is hidden, click the button on the left side
of the footer area to reveal it.) This panel contains a References tab with links to all documents referring
back to the one you’re currently viewing, if any has been defined. If you have created root folders and
tags for various story elements like characters and plot points, these will appear as additional tabs in this
panel.

Note: The References panel relies on an up-to-date index of the project. The index is maintained
automatically. However, if anything is missing, or seems wrong, the index can always be rebuilt by
selecting Rebuild Index from the Tools menu, or by pressing F9.

36 Chapter 9. The Editor and Viewer

User Guide, Release 2.2.1

Fig. 2: A screenshot of the Document Viewer panel.

9.2. Viewing a Document 37

User Guide, Release 2.2.1

New in version 2.2: The reference panel was redesigned and the additional tabs added.

9.3 Search & Replace

Fig. 3: A screenshot of the Document Editor search box.

The document editor has a search and replace tool that can be activated with Ctrl+F for search mode or
Ctrl+H for search and replace mode.

Pressing Return while in the search box will search for the next occurrence of the word, and
Shift+Return for the previous. Pressing Return in the replace box, will replace the highlighted text
and move to the next result.

There are a number of settings for the search tool available as toggle switches above the search box.
They allow you to search for, in order: matched case only, whole word results only, search using regular
expressions, loop search when reaching the end of the document, and move to the next document when
reaching the end. There is also a switch that will try to match the case of the word when the replacement
is made. That is, it will try to keep the word upper, lower, or capitalised to match the word being replaced.

The regular expression search is somewhat dependant on which version of Qt your system has. If you
have Qt 5.13 or higher, there is better support for Unicode symbols in the search.

See also:

For more information on the capabilities of the Regular Expression option, see the Qt documentation for
the QRegularExpression class.

9.4 Auto-Replace as You Type

A few auto-replace features are supported by the editor. You can control every aspect of the auto-replace
feature from Preferences. You can also disable this feature entirely if you wish.

Tip: If you don’t like auto-replacement, all symbols inserted by this feature are also available in the
Insert menu, and via Insert Shortcuts. You may also be using a Compose Key setup, which means you
may not need the auto-replace feature at all.

The editor is able to replace two and three hyphens with short and long dashes, triple points with el-
lipsis, and replace straight single and double quotes with user-defined quote symbols. It will also try
to determine whether to use the opening or closing symbol, although this feature isn’t always accurate.
Especially distinguishing between closing single quote and apostrophe can be tricky for languages that
use the same symbol for these, like English does.

38 Chapter 9. The Editor and Viewer

https://doc.qt.io/qt-5/qregularexpression.html
https://en.wikipedia.org/wiki/Compose_key

User Guide, Release 2.2.1

Tip: If the auto-replace feature changes a symbol when you did not want it to change, pressing Ctrl+Z
once after the auto-replacement will undo it without undoing the character you typed before it.

9.4. Auto-Replace as You Type 39

User Guide, Release 2.2.1

40 Chapter 9. The Editor and Viewer

CHAPTER

TEN

FORMATTING YOUR TEXT

The novelWriter text editor is a plain text editor that uses formatting codes for setting meta data values and
allowing for some text formatting. The syntax is based on Markdown, but novelWriter is not a Markdown
editor. It supports basic formatting like emphasis (italic), strong importance (bold) and strike through
text, as well as four levels of headings. Form some further complex formatting needs, a set of shortcodes
can be used.

In addition to formatting codes, novelWriter allows for comments, a synopsis tag, and a set of keyword
and value sets used for tags and references. There are also some codes that apply to whole paragraphs.
See Text Paragraphs for more details.

10.1 Syntax Highlighting

The editor has a syntax highlighter feature that is meant to help you know when you’ve used the formatting
tags or other features correctly. It will change the colour and font size of your headings, change the text
colour of emphasised text, and it can also show you where you have dialogue in your text.

Fig. 1: An example of the colour highlighting of references. “Bob” is not defined, and “@blabla” is not
a valid reference type.

When you use the commands to set tags and references, these also change colour. Correct commands
have a distinct colour, and the references themselves will get a colour if they are valid. Invalid references
will get a squiggly error line underneath. The same applies to duplicate tags.

There are a number of syntax highlighter colour themes available, both for light and dark GUIs. You can
select them from Preferences.

41

User Guide, Release 2.2.1

10.2 Headings

Fig. 2: An illustration of how header levels correspond to the novel structure.

Four levels of headings are allowed. For project notes, they are free to be used as you see fit. That is,
novelWriter doesn’t assign the different headings any particular meaning. However, for novel documents
they indicate the structural level of the novel and must be used correctly to produce the intended result.
See Importance of Headings for more details.

Title Text
Heading level one. For novel documents, the header level indicates the start of a new partition.

Title Text
Heading level two. For novel documents, the header level indicates the start of a new chapter.
Chapter numbers can be inserted automatically when building the manuscript.

Title Text
Heading level three. For novel documents, the header level indicates the start of a new scene. Scene
numbers or scene separators can be inserted automatically when building the manuscript, so you
can use the title field as a working title for your scenes if you wish.

Title Text
Heading level four. For novel documents, the header level indicates the start of a new section.
Section titles can be replaced by separators or ignored completely when building the manuscript.

For headers level one and two, adding a ! modifies the behaviour of the heading:

#! Title Text
This tells the build tool that the level one heading is intended to be used for the novel’s main title,
like for instance on the front page. When building the manuscript, this will use a different styling
and will exclude the title from, for instance, a Table of Contents in Libre Office.

##! Title Text
This tells the build tool to not assign a chapter number to this chapter title if automatic chapter num-
bers are being used. Such titles are useful for a prologue for instance. See Unnumbered Chapter
Headings for more details.

Note: The space after the # or ! character is mandatory. The syntax highlighter will change colour and

42 Chapter 10. Formatting Your Text

User Guide, Release 2.2.1

font size when the heading is correctly formatted.

10.3 Text Paragraphs

A text paragraph is indicated by a blank line. That is, you need two line breaks to separate two fragments
of text into two paragraphs. Single line breaks are treated as line breaks within a paragraph.

In addition, the editor supports a few additional types of white spaces:

• A non-breaking space can be inserted with Ctrl+K, Space.

• Thin spaces are also supported, and can be inserted with Ctrl+K, Shift+Space.

• Non-breaking thin space can be inserted with Ctrl+K, Ctrl+Space.

These are all insert features, and the Insert menu has more. They are also listed in Insert Shortcuts.

Non-breaking spaces are highlighted by the syntax highlighter with an alternate coloured background,
depending on the selected theme.

Tip: Non-breaking spaces are for instance the correct type of space to separate a number from its unit.
Generally, non-breaking spaces are used to prevent line wrapping algorithms from adding line breaks
where they shouldn’t.

10.4 Text Emphasis

A minimal set of text emphasis styles are supported for text paragraphs.

text
The text is rendered as emphasised text (italicised).

text
The text is rendered as strongly important text (bold).

~~text~~
Strike through text.

In Markdown guides it is often recommended to differentiate between strong importance and emphasis
by using ** for strong and _ for emphasis, although Markdown generally also supports __ for strong and
* for emphasis. However, since the differentiation makes the highlighting and conversion significantly
simpler and faster, in novelWriter this is a rule, not just a recommendation.

In addition, the following rules apply:

1. The emphasis and strike through formatting tags do not allow spaces between the words and the
tag itself. That is, **text** is valid, **text ** is not.

2. More generally, the delimiters must be on the outer edge of words. That is, some **text in
bold** here is valid, some** text in bold** here is not.

3. If using both ** and _ to wrap the same text, the underscore must be the inner wrapper. This is
due to the underscore also being a valid word character, so if they are on the outside, they violate
rule 2.

10.3. Text Paragraphs 43

User Guide, Release 2.2.1

4. Text emphasis does not span past line breaks. If you need to add emphasis to multiple lines or
paragraphs, you must apply it to each of them in turn.

5. Text emphasis can only be used in plain paragraphs. Comments, titles, and meta data tags don’t
allow for formatting, and any formatting markup will be rendered as-is.

Tip: novelWriter supports standard escape syntax for the emphasis markup characters in case the editor
misunderstands your intended usage of them. That is, *, _ and \~ will generate a plain *, _ and ~,
respectively, without interpreting them as part of the markup.

10.5 Extended Formatting with Shortcodes

For additional formatting options, you can use shortcodes. Shortcodes is a form of in-line codes that
can be used to change the format of the text that follows and opening code, and last until that formatting
region is ended with a closing code.

These shortcodes are intended for special formatting cases, or more complex cases that cannot be solved
with simple Markdown-like formatting codes. Available shortcodes are listed below.

Table 1: Shortcodes Formats

Syntax Description
[b]text[/b] Text is rendered as bold text.
[i]text[/i] Text is rendered as italicised text.
[s]text[/s] Text is rendered as strike through text.
[u]text[/u] Text is rendered as underlined text.
[sup]text[/sup] Text is rendered as superscript text.
[sub]text[/sub] Text is rendered as subscript text.

Unlike Markdown style codes, these can be used anywhere within a paragraph. Even in the middle of a
word if you need to. You can also freely combine them to form more complex formatting.

The shortcodes are available from the Format menu and in the editor toolbar, which can be activated by
clicking the three dots in the editor header.

New in version 2.2.

10.6 Comments and Synopsis

In addition to these standard Markdown features, novelWriter also allows for comments in documents.
The text of a comment is ignored by the word counter. The text can also be filtered out when building
the manuscript or viewing the document.

If the first word of a comment is Synopsis: (with the colon included), the comment is treated in a special
manner and will show up in the Project Outline View in a dedicated column. The word synopsis is not
case sensitive. If it is correctly formatted, the syntax highlighter will indicate this by altering the colour
of the word.

44 Chapter 10. Formatting Your Text

User Guide, Release 2.2.1

% text ...
This is a comment. The text is not rendered by default (this can be overridden), seen in the docu-
ment viewer, or counted towards word counts.

%Synopsis: text ...
This is a synopsis comment. It is generally treated in the same way as a regular comment, except
that it is also captured by the indexing algorithm and displayed in the Project Outline View. It can
also be filtered separately when building the project to for instance generate an outline document
of the whole project.

%Short: text ...
This is a short description comment. It is identical to the synopsis comment, but is intended to be
used for project notes. The text shows up in the Reference panel below the document viewer in the
last column labelled Short Description.

Note: Only one comment can be flagged as a synopsis or short comment for each heading. If multiple
comments are flagged as synopsis or short comments, the last one will be used and the rest ignored.

10.7 Tags and References

The document editor supports a set of keywords used for setting tags, and making references between
documents.

Tags use the command @tag: to define a tag. The tag can be set once per section defined by a heading.
Setting it multiple times under the same heading will just override the previous setting.

@tag: value
A tag command followed by the tag value, like for instance the name of a character.

References can be set anywhere within a section, and are collected according to their category. References
are in the form:

@keyword: value
A reference keyword followed by a value, or a comma separated list of values.

Tags and references are covered in detail in the Tags and References chapter. The keywords can be
inserted at the cursor position in the editor via the Insert menu. If you start typing an @ on a new line,
and auto-complete menu will also pop up suggesting keywords.

10.8 Paragraph Alignment and Indentation

All documents have the text by default aligned to the left or justified, depending on your settings in
Preferences.

You can override the default text alignment on individual paragraphs by specifying alignment tags. These
tags are double angle brackets. Either >> or <<. You put them either before or after the paragraph, and
they will “push” the text towards the edge the brackets point towards. This should be fairly intuitive.

Indentation uses a similar syntax. But here you use a single > or < to push the text away from the edge.

Examples:

10.7. Tags and References 45

User Guide, Release 2.2.1

Table 2: Text Alignment and Indentation

Syntax Description
>> Right aligned text The text paragraph is right-aligned.
Left aligned text << The text paragraph is left-aligned.
>> Centred text << The text paragraph is centred.
> Left indented text The text has an increased left margin.
Right indented text < The text has an increased right margin.
> Left/right indented text < The text has both margins increased.

Note: The text editor will not show the alignment and indentation live. But the viewer will show them
when you open the document there. It will of course also be reflected in the document generated from
the build tool as long as the format supports paragraph alignment.

10.9 Vertical Space and Page Breaks

Adding more than one line break between paragraphs will not increase the space between those para-
graphs when building the project. To add additional space between paragraphs, add the text [VSPACE]
on a line of its own, and the build tool will insert a blank paragraph in its place.

If you need multiple blank paragraphs just add a colon and a number to the above code. For instance,
writing [VSPACE:3] will insert three blank paragraphs.

Normally, the build tool will insert a page break before all headers of level one and for all headers of level
two for novel documents, i.e. chapters, but not for project notes.

If you need to add a page break somewhere else, put the text [NEW PAGE] on a line by itself before the
text you wish to start on a new page.

If you want page breaks for scenes and sections, you must add them manually.

Note: The page break code is applied to the text that follows it. It adds a “page break before” mark to
the text when exporting to HTML or Open Document. This means that a [NEW PAGE] which has no text
following it, it will not result in a page break.

Example:

This is a text paragraph.

[VSPACE:2]

This is another text paragraph, but there will be two empty paragraphs
in-between them.

[NEWPAGE]

This text will always start on a new page if the build format has pages.

46 Chapter 10. Formatting Your Text

CHAPTER

ELEVEN

KEYBOARD SHORTCUTS

Most features in novelWriter are available as keyboard shortcuts. This is a reference list of those shortcuts.
Most of them are also listed in the application’s user interface.

Note: On MacOS, replace Ctrl with Cmd.

11.1 Main Window Shortcuts

Shortcut Description
F1 Open the online user manual
F5 Open the Build Manuscript tool
F6 Open the Writing Statistics tool
F8 Toggle Focus Mode
F9 Re-build the project index
F11 Toggle full screen mode
Ctrl+, Open the Preferences dialog
Ctrl+E Switch focus to the document editor
Ctrl+T Switch focus to the project/novel tree
Ctrl+Q Exit novelWriter
Ctrl+Shift+, Open the Project Settings dialog
Ctrl+Shift+O Open a project
Ctrl+Shift+S Save the current project
Ctrl+Shift+T Switch focus to the outline view
Ctrl+Shift+W Close the current project
Shift+F1 Open the local user manual (PDF) if it is available
Shift+F6 Open the Project Details dialog

47

User Guide, Release 2.2.1

11.2 Project Tree Shortcuts

Shortcut Description
F2 Edit the label of the selected item
Return Open the selected document in the editor
Alt+Up Jump or go to the previous item at same level in the tree
Alt+Down Jump or go to the next item at same level in the tree
Alt+Left Jump to the parent item in the tree
Alt+Right Jump to the first child item in the project tree
Ctrl+. Open the context menu on the selected item
Ctrl+L Open the Quick Links menu
Ctrl+N Open the Create New Item menu
Ctrl+O Open selected document
Ctrl+R Open the selected document in the viewer
Ctrl+Up Move selected item one step up in the tree
Ctrl+Down Move selected item one step down in the tree
Ctrl+Shift+Del Move the selected item to Trash
Ctrl+Shift+Z Undo the last move of a project item, if possible

11.3 Document Editor Shortcuts

11.3.1 Text Search Shortcuts

Shortcut Description
F3 Find the next occurrence of the search word
Ctrl+F Open the search bar and search for the selected word, if any is selected
Ctrl+G Find the next occurrence of the search word
Ctrl+H Open the search tool and populate with the selected word (Mac Cmd+=)
Ctrl+Shift+1 Replace selected occurrence of the search word, and move to the next
Ctrl+Shift+G Find the previous occurrence of the search word
Shift+F3 Find the previous occurrence of the search word

48 Chapter 11. Keyboard Shortcuts

User Guide, Release 2.2.1

11.3.2 Text Formatting Shortcuts

Shortcut Description
Ctrl+' Wrap selected text, or word under cursor, in single quotes
Ctrl+" Wrap selected text, or word under cursor, in double quotes
Ctrl+/ Toggle block format as comment
Ctrl+0 Remove block formatting for block under cursor
Ctrl+1 Change block format to header level 1
Ctrl+2 Change block format to header level 2
Ctrl+3 Change block format to header level 3
Ctrl+4 Change block format to header level 4
Ctrl+5 Change block alignment to left-aligned
Ctrl+6 Change block alignment to centred
Ctrl+7 Change block alignment to right-aligned
Ctrl+8 Add a left margin to the block
Ctrl+9 Add a right margin to the block
Ctrl+B Format selected text, or word under cursor, with strong emphasis (bold)
Ctrl+D Strike through selected text, or word under cursor
Ctrl+I Format selected text, or word under cursor, with emphasis (italic)
Ctrl+Shift+/ Remove block formatting for block under cursor

11.3.3 Other Editor Shortcuts

Shortcut Description
F7 Re-run the spell checker
Ctrl+. Open the context menu at the current cursor location
Ctrl+A Select all text in the document
Ctrl+C Copy selected text to clipboard
Ctrl+K Activate the insert commands (see list in Insert Shortcuts)
Ctrl+R Open or reload the current document in the viewer
Ctrl+S Save the current document
Ctrl+V Paste text from clipboard to cursor position
Ctrl+W Close the current document
Ctrl+X Cut selected text to clipboard
Ctrl+Y Redo latest undo
Ctrl+Z Undo latest changes
Ctrl+Backspace Delete the word before the cursor
Ctrl+Del Delete the word after the cursor
Ctrl+F7 Toggle spell checking
Ctrl+Return Open the tag or reference under the cursor in the viewer
Ctrl+Shift+A Select all text in the current paragraph
Ctrl+Shift+I Import text to the current document from a text file

11.3. Document Editor Shortcuts 49

User Guide, Release 2.2.1

11.3.4 Insert Shortcuts

A set of insert features are also available through shortcuts, but they require a double combination of key
sequences. The insert feature is activated with Ctrl+K, followed by a key or key combination for the
inserted content.

Shortcut Description
Ctrl+K, Space Insert a non-breaking space
Ctrl+K, _ Insert a long dash (em dash)
Ctrl+K, . Insert an ellipsis
Ctrl+K, ' Insert a modifier apostrophe
Ctrl+K, * Insert a list bullet
Ctrl+K, % Insert a per mille symbol
Ctrl+K, ~ Insert a figure dash (same width as a number)
Ctrl+K, – Insert a short dash (en dash)
Ctrl+K, 1 Insert a left single quote
Ctrl+K, 2 Insert a right single quote
Ctrl+K, 3 Insert a left double quote
Ctrl+K, 4 Insert a right double quote
Ctrl+K, C Insert a @char keyword
Ctrl+K, E Insert an @entity keyword
Ctrl+K, F Insert a @focus keyword
Ctrl+K, G Insert a @tag keyword
Ctrl+K, H Insert a short description comment
Ctrl+K, L Insert a @location keyword
Ctrl+K, O Insert an @object keyword
Ctrl+K, P Insert a @plot keyword
Ctrl+K, S Insert a synopsis comment
Ctrl+K, T Insert a @time keyword
Ctrl+K, V Insert a @pov keyword
Ctrl+K, X Insert a @custom keyword
Ctrl+K, Ctrl+Space Insert a thin non-breaking space
Ctrl+K, Ctrl+_ Insert a horizontal bar (quotation dash)
Ctrl+K, Ctrl+' Insert a prime
Ctrl+K, Ctrl+" Insert a double prime
Ctrl+K, Ctrl+* Insert a flower mark (alternative bullet)
Ctrl+K, Ctrl+– Insert a hyphen bullet (alternative bullet)
Ctrl+K, Ctrl+D Insert a division sign
Ctrl+K, Ctrl+O Insert a degree symbol
Ctrl+K, Ctrl+X Insert a times sign
Ctrl+K, Shift+Space Insert a thin space

50 Chapter 11. Keyboard Shortcuts

User Guide, Release 2.2.1

11.4 Document Viewer Shortcuts

Shortcut Description
Alt+Left Move backward in the view history
Alt+Right Move forward in the view history
Ctrl+C Copy selected text to clipboard
Ctrl+Shift+A Select all text in the current paragraph
Ctrl+Shift+R Close the document viewer

11.4. Document Viewer Shortcuts 51

User Guide, Release 2.2.1

52 Chapter 11. Keyboard Shortcuts

CHAPTER

TWELVE

TYPOGRAPHICAL NOTES

novelWriter has some support for typographical symbols that are not usually easily available in many text
editors. This includes for instance the proper unicode quotation marks, dashes, ellipsis, thin spaces, etc.
All these symbols are available from the Insert menu, and via keyboard shortcuts. See Insert Shortcuts.

This chapter provides some additional information on how novelWriter handles these symbols.

12.1 Special Notes on Symbols

This section contains additional notes on the available special symbols.

12.1.1 Dashes and Ellipsis

With the auto-replace feature enabled (see Auto-Replace as You Type), multiple hyphens are converted
automatically to short and long dashes, and three dots to ellipsis. The last auto-replace can always be
reverted with the undo command Ctrl+Z, reverting the text to what you typed before the automatic
replacement occurred.

In addition, “Figure Dash” is available. The Figure Dash is a dash that has the same width as the numbers
of the same font, for most fonts. It helps to align numbers nicely in columns when you need to use a dash
in them.

12.1.2 Single and Double Quotes

All the different quotation marks listed on the Quotation Mark Wikipedia page are available, and can be
selected as auto-replaced symbols for straight single and double quote key strokes. The settings can be
found in Preferences.

Ordinarily, text wrapped in quotes are highlighted by the editor. This is meant as a convenience for
highlighting dialogue between characters. This feature can be disabled in Preferences if this feature isn’t
wanted.

The editor distinguishes between text wrapped in regular straight double quotes and the user-selected
double quote symbols. This is to help the writer recognise which parts of the text are not using the
chosen quote symbols. Two convenience functions in the Format menu can be used to re-format a selected
section of text with the correct quote symbols.

53

https://en.wikipedia.org/wiki/Quotation_mark

User Guide, Release 2.2.1

12.1.3 Single and Double Prime

Both single and double prime symbols are available in the Insert menu. These symbols are the correct
symbols to use for unit symbols for feet, inches, minutes, and seconds. The usage of these is described
in more detail on the Wikipedia Prime page. They look very similar to single and double straight quotes,
and may be rendered similarly by the font, but they have different codes. Using these correctly will also
prevent the auto-replace and dialogue highlighting features misunderstanding their meaning in the text.

12.1.4 Modifier Letter Apostrophe

The auto-replace feature will consider any right-facing single straight quote as a quote symbol, even if
it is intended as an apostrophe. This also includes the syntax highlighter, which may assume the first
following apostrophe is the closing symbol of a single quoted region of text.

To get around this, an alternative apostrophe is available. It is a special Unicode character that is not
categorised as punctuation, but as a modifier. It is usually rendered the same way as the right single
quotation marks, depending on the font. There is a Wikipedia article for the Modifier letter apostrophe
with more details.

Note: On export with the Build Manuscript tool, these apostrophes will be replaced automatically with
the corresponding right hand single quote symbol as is generally recommended. Therefore it doesn’t
really matter if you only use them to correct syntax highlighting.

12.1.5 Special Space Symbols

A few variations of the regular space character is supported. The correct typographical way to separate
a number from its unit is with a thin space. It is usually 2/3 the width of a regular space. For numbers
and units, this should in addition be a non-breaking space, that is, the text wrapping should not add a line
break on this particular space.

A regular space can also be made into a non-breaking space if needed.

All non-breaking spaces are highlighted with a differently coloured background to make it easier to spot
them in the text. The colour will depend on the selected colour theme.

The thin and non-breaking spaces are converted to their corresponding HTML codes on export to HTML
format.

54 Chapter 12. Typographical Notes

https://en.wikipedia.org/wiki/Prime_(symbol)
https://en.wikipedia.org/wiki/Modifier_letter_apostrophe
https://en.wikipedia.org/wiki/Thin_space

CHAPTER

THIRTEEN

PROJECT FORMAT CHANGES

Most of the changes to the file formats over the history of novelWriter have no impact on the user side
of things. The project files are generally updated automatically. However, some of the changes require
minor actions from the user.

The key changes in the formats are listed in this chapter, as well as the user actions required, where
applicable.

A full project file format specification is available in the online documentation.

Caution: When you update a project from one format version to the next, the project can no longer
be opened by a version of novelWriter prior to the version where the new file format was introduced.
You will get a notification about any updates to your project file format and will have the option to
decline the upgrade.

13.1 Format 1.5 Changes

This project format was introduced in novelWriter version 2.0 RC 2.

This is a modification of the 1.4 format. It makes the XML more consistent in that meta data have been
moved to their respective section nodes as attributes, and key/value settings now have a consistent format.
Logical flags are saved as yes/no instead of Python True/False, and the main heading of the document
is now saved to the item rather than in the index. The conversion is done automatically the first time a
project is loaded. No user action is required.

13.2 Format 1.4 Changes

This project format was introduced in novelWriter version 2.0 RC 1. Since this was a release candidate,
it is unlikely that your project uses it, but it may be the case if you’ve installed a pre-release.

This format changes the way project items (folders, documents and notes) are stored. It is a more compact
format that is simpler and faster to parse, and easier to extend. The conversion is done automatically the
first time a project is loaded. No user action is required.

55

https://docs.novelwriter.io/

User Guide, Release 2.2.1

13.3 Format 1.3 Changes

This project format was introduced in novelWriter version 1.5.

With this format, the number of document layouts was reduced from eight to two. The conversion of
document layouts is performed automatically when the project is opened.

Due to the reduction of layouts, some features that were previously controlled by these layouts will be
lost. These features are instead now controlled by syntax codes, so to recover these features, some minor
modification must be made to select documents by the user.

The manual changes the user must make should be very few as they apply to document layouts that should
be used only a few places in any given project. These are as follows:

Title Pages

• The formatting of the level one title on the title page must be changed from # Title Text to #!
Title Text in order to retain the previous functionality. See Headings.

• Any text that was previously centred on the page must be manually centred using the text alignment
feature. See Paragraph Alignment and Indentation.

Unnumbered Chapters

• Since the specific layout for unnumbered chapters has been dropped, such chapters must all use the
##! Chapter Name formatting code instead of ## Chapter Name. This also includes chapters
marked by an asterisk: ## *Chapter Name, as this feature has also been dropped. See Headings.

Plain Pages

• The layout named “Plain Page” has also been removed. The only feature of this layout was that it
ensured that the content always started on a fresh page. In the new format, fresh pages can be set
anywhere in the text with the [NEW PAGE] code. See Vertical Space and Page Breaks.

13.4 Format 1.2 Changes

This project format was introduced in novelWriter version 0.10.

With this format, the way auto-replace entries were stored in the main project XML file changed.

13.5 Format 1.1 Changes

This project format was introduced in novelWriter version 0.7.

With this format, the content folder was introduced in the project storage. Previously, all novelWriter
documents were saved in a series of folders numbered from data_0 to data_f.

It also reduces the number of meta data and cache files. These files are automatically deleted if an old
project is opened. This was also when the Table of Contents file was introduced.

56 Chapter 13. Project Format Changes

User Guide, Release 2.2.1

13.6 Format 1.0 Changes

This is the original file format and project structure. It was in use up to version 0.6.3.

13.6. Format 1.0 Changes 57

User Guide, Release 2.2.1

58 Chapter 13. Project Format Changes

CHAPTER

FOURTEEN

NOVEL PROJECTS

New projects can be created from the Project menu by selecting New Project. This will open the New
Project Wizard that will assist you in creating a bare bone project suited to your needs.

A novelWriter project requires a dedicated folder for storing its files on the local file system. If you’re
interested in the details, you can have a look at the chapter How Data is Stored.

A list of recently opened projects is maintained, and displayed in the Open Project dialog. A project can
be removed from this list by selecting it and pressing the Del key or by clicking the Remove button.

Project-specific settings are available in Project Settings in the Project menu. See further details below
in the Project Settings section. Details about the project, including word counts, and a table of contents
with word and page counts, is available through the Project Details dialog.

14.1 Project Roots

Projects are structured into a set of top level folders called “Root Folders”. They are visible in the project
tree at the left side of the main window.

The novel documents go into a root folder of type Novel. Project notes go into the other root folders.
These other root folder types are intended for your notes on the various elements of your story. Using
them is of course entirely optional.

A new project may not have all of the root folders present, but you can add the ones you want from the
project tree tool bar.

Each root folder has one or more reference keyword associated with it that is used to reference them from
other documents and notes. The intended usage of each type of root folder is listed below. However,
aside from the Novel folder, no restrictions are applied by the application on what you put in them. You
can use them however you want.

The root folder system is closely connected to how the Tags and References system works. For more
details, see the Tags and References chapter.

Novel
This is the root folder type for text that goes into the final novel or novels. This class of documents
have other rules and features than the project notes. See Novel Structure for more details.

Plot
This is the root folder type where main plots can be outlined. It is optional, but adding at least
brief notes can be useful in order to tag plot elements for the Outline View. Tags in this folder can
be references using the @plot keyword.

59

User Guide, Release 2.2.1

Characters
Character notes go in this root folder type. These are especially important if you want to use the
Outline View to see which character appears where, which part of the story is told from a specific
character’s point-of-view, or focusing on a particular character’s storyline. Tags in this type of
folder can be referenced using the @pov keyword for point-of-view characters, @focus for a focus
character, or the @char keyword for any other character present.

Locations
The locations folder type is for various scene locations that you want to track. Tags in this folder
can be references using the @location keyword.

Timeline
If the story has multiple plot timelines or jumps in time within the same plot, this folder type can
be used to track this. Tags in this type of folder can be references using the @time keyword.

Objects
Important objects in the story, for instance objects that change hands often, can be tracked here.
Tags in this type of folder can be references using the @object keyword.

Entities
Does your plot have many powerful organisations or companies? Or other entities that are part
of the plot? They can be organised here. Tags in this type of folder can be references using the
@entity keyword.

Custom
The custom root folder type can be used for tracking anything else not covered by the above options.
Tags in this folder type can be references using the @custom keyword.

The root folders correspond to the categories of tags that can be used to reference them. For more
information about the tags listed, see How to Use References.

Note: You can rename root folders to whatever you want. However, this doesn’t change the reference
keyword or what they do.

New in version 2.0: As of version 2.0, you can make multiple root folders of each kind to split up your
project.

14.1.1 Deleted Documents

Deleted documents will be moved into a special Trash root folder. Documents in the trash folder can then
be deleted permanently, either individually, or by emptying the trash from the menu. Documents in the
trash folder are removed from the project index and cannot be referenced.

A document or a folder can be deleted from the Project menu, or by pressing Ctrl+Shift+Del. Root
folders can only be deleted when they are empty.

60 Chapter 14. Novel Projects

User Guide, Release 2.2.1

14.1.2 Archived Documents

If you don’t want to delete a document, or put it in the Trash folder where it may be deleted accidentally,
but still want it out of your main project tree, you can create an Archive root folder and move it there.

You can drag any document to this folder and preserve its settings. The document will always be excluded
from the Build Manuscript tool. It is also removed from the project index, so the tags and references
defined in it will not show up anywhere else.

14.1.3 Recovered Documents

If novelWriter crashes or otherwise exits without saving the project state, or if you’re using a file syn-
chronisation tool that runs out of sync, there may be files in the project folder that aren’t tracked in the
core project file. These files, when discovered, are recovered and added back into the project.

The discovered files are scanned for metadata that give clues as to where the document may previously
have been located in the project. The project loading routine will try to put them back as close as possible
to this location, if it still exists. Generally, it will be appended to the end of the folder where it previously
was located. If that folder doesn’t exist, it will try to add it to the correct root folder type. If it cannot
figure out which root folder is correct, the document will be added to the Novel root folder. Finally, if the
Novel folder is missing, one will be created.

If the title of the document can be recovered, the word “Recovered:” will be added as a prefix to indicate
that it may need further attention. If the title cannot be determined, the document will be named after its
internal key, which is a string of characters and numbers.

14.1.4 Project Lockfile

To prevent lost documents caused by file conflicts when novelWriter projects are synchronised via file
synchronisation tools, a project lockfile is written to the project folder. If you try to open a project which
has such a file present, you will be presented with a warning, and some information about where else
novelWriter thinks the project is also open. You will be given the option to ignore this warning, and
continue opening the project at your own risk.

Note: If, for some reason, novelWriter crashes, the lock file may remain even if there are no other
instances keeping the project open. In such a case it is safe to ignore the lock file warning when re-
opening the project.

Warning: If you choose to ignore the warning and continue opening the project, and multiple
instances of the project are in fact open, you are likely to cause inconsistencies and create diverging
project files, potentially resulting in loss of data and orphaned files. You are not likely to lose any
actual text unless both instances have the same document open in the editor, and novelWriter will try
to resolve project inconsistencies the next time you open the project.

14.1. Project Roots 61

User Guide, Release 2.2.1

14.1.5 Using Folders in the Project Tree

Folders, aside from root folders, have no structural significance to the project. When novelWriter is
processing the documents in a project, like for instance when you create a manuscript from it, these
folders are ignored. Only the order of the documents themselves matter.

The folders are there purely as a way for you to organise the documents in meaningful sections and to be
able to collapse and hide them in the project tree when you’re not working on those documents.

New in version 2.0: As of version 2.0 it is possible to add child documents to other documents. This
is particularly useful when you create chapters and scenes. If you add separate scene documents, you
should also add separate chapter documents, even if they only contain a chapter heading. You can then
add scene documents as child items to the chapters.

14.2 Project Documents

New documents can be created from the toolbar in the Project Tree, or by pressing Ctrl+N. This will
open the create new item menu and let you choose between a number of pre-defined documents and
folders. You will be prompted for a label for the new item.

You can always rename an item by selecting Rename Item from the Project menu, or by pressing F2.

Other settings for project items are available from the context menu that you can activate by right-clicking
on an item in the tree. The Transform submenu includes options for converting, splitting, or merging
items. See Splitting and Merging Documents for more details on the latter two.

14.2.1 Word Counts

A character, word and paragraph count is maintained for each document, as well as for each section of a
document following a heading. The word count and change of words in the current session is displayed
in the footer of any document open in the editor, and all stats are shown in the details panel below the
Project Tree for any document selected in the project or novel trees.

The word counts are not updated in real time, but run in the background every few seconds for as long as
the document is being actively edited.

A total project word count is displayed in the status bar. The total count depends on the sum of the values
in the project tree, which again depend on an up to date project index. If the counts seem wrong, a full
project word recount can be initiated by rebuilding the project’s index. Either from the Tools menu, or
by pressing F9.

14.3 Project Settings

The Project Settings can be accessed from the Project menu, or by pressing Ctrl+Shift+,. This will
open a dialog box, with a set of tabs.

62 Chapter 14. Novel Projects

User Guide, Release 2.2.1

14.3.1 Settings Tab

The Settings tab holds the project name, title, and author settings.

The Project Name can be set to a different value than the Novel Title. The difference between them is
simply that the Project Name is used for the GUI (main window title) and for generating backup files. The
intention is that the Project Name should remain unchanged throughout the project’s lifetime, otherwise
the name of exported files and backup files may change too.

The Novel Title and Authors settings are used when building the manuscript, for some formats.

If your project is in a different language than your main spell checking language is set to, you can override
the default setting here. You can also override the automatic backup setting. The project language can
also be changed from the Tools menu.

14.3.2 Status and Importance Tabs

Each document or folder of type Novel can be given a Status label accompanied by a coloured icon, and
each document or folder of the remaining types can be given an Importance label.

These labels are there purely for your convenience, and you are not required to use them for any other
features to work. No other part of novelWriter accesses this information. The intention is to use these to
indicate at what stage of completion each novel document is, or how important the content of a note is to
the story. You don’t have to use them this way, that’s just what they were intended for, but you can make
them whatever you want.

See also Document Importance and Status.

Note: The status or importance level currently in use by one or more documents cannot be deleted, but
they can be edited.

14.3.3 Auto-Replace Tab

A set of automatically replaced keywords can be added in this tab. The keywords in the left column will
be replaced by the text in the right column when documents are opened in the viewer. They will also be
applied to manuscript builds.

The auto-replace feature will replace text in angle brackets that is in this list. The syntax highlighter will
add an alternate colour to text matching the syntax, but it doesn’t check if the text is in this list.

Note: A keyword cannot contain spaces. The angle brackets are added by default, and when used in the
text are a part of the keyword to be replaced. This is to ensure that parts of the text aren’t unintentionally
replaced by the content of the list.

14.3. Project Settings 63

User Guide, Release 2.2.1

14.4 Backup

An automatic backup system is built into novelWriter. In order to use it, a backup path to where the
backup files are to be stored must be provided in Preferences.

Backups can be run automatically when a project is closed, which also implies it is run when the appli-
cation itself is closed. Backups are date stamped zip files of the project files in the project folder (files
not strictly a part of the project are ignored). The zip archives are stored in a subfolder of the backup
path. The subfolder will have the same name as the Project Name as defined in Project Settings.

The backup feature, when configured, can also be run manually from the Tools menu. It is also possible
to disable automated backups for a given project in Project Settings.

Note: For the backup to be able to run, the Project Name must be set in Project Settings. This value is
used to generate the name and path of the backups. Without it, the backup will not run at all, but it will
produce a warning message.

14.5 Writing Statistics

When you work on a project, a log file records when you opened it, when you closed it, and the total
word counts of your novel documents and notes at the end of the session, provided that the session lasted
either more than 5 minutes, or that the total word count changed. For more details about the log file, see
How Data is Stored.

A tool to view the content of the log file is available in the Tools menu under Writing Statistics. You can
also launch it by pressing F6, or find it on the sidebar.

The tool will show a list of all your sessions, and a set of filters to apply to the data. You can also export
the filtered data to a JSON file or to a CSV file that can be opened by a spreadsheet application like for
instance Libre Office Calc or Excel.

New in version 1.2: As of version 1.2, the log file also stores how much of the session time was spent
idle. The definition of idle here is that the novelWriter main window loses focus, or the user hasn’t made
any changes to the currently open document in five minutes. The number of minutes can be altered in
Preferences.

64 Chapter 14. Novel Projects

CHAPTER

FIFTEEN

NOVEL STRUCTURE

This chapter covers the structure of a novel project.

There are two different types of documents in a project, Novel Documents and Project Notes. Novel
documents can only live in a Novel type root folder. You can also move them to Archive and Trash of
course.

The Project Tree can distinguish between the different header levels of the novel documents using
coloured icons, and optionally add emphasis on the label, set in Preferences.

15.1 Importance of Headings

Subfolders under root folders have no impact on the structure of the novel itself. The structure is instead
dictated by the heading level of the headings within the documents.

Four levels of headings are supported, signified by the number of hashes (#) preceding the title. See also
the Formatting Your Text section for more details about the markup syntax.

Note: The header levels are not only important when generating the manuscript, they are also used by
the indexer when building the outline tree in the Outline View as well as in the Novel Tree. Each heading
also starts a new region where new Tags and References can be defined. See Tags and References for
more details.

The syntax for the four basic header types, and the two special header types, is listed in section Headings.
The meaning of the four levels for the structure of your novel is as follows:

Header Level 1: Partition
This header level signifies that the text refers to a top level partition. This is useful when you want
to split the manuscript up into books, parts, or acts. These headings are not required. The novel
title itself should use the special header level #! covered in Headings.

Header Level 2: Chapter
This header level signifies a chapter level partition. Each time you want to start a new chapter, you
must add such a heading. If you choose to split your manuscript up into one document per scene,
you need a single chapter document with just the heading. You can of course also add a synopsis
and reference keywords to the chapter document. If you want to open the chapter with a quote or
other introductory text that isn’t part of a scene, this is also where you’d put that text.

Header Level 3: Scene
This header level signifies a scene level partition. You must provide a title text, but the title text
can be replaced with a scene separator or just skipped entirely when you build your manuscript.

65

User Guide, Release 2.2.1

Header Level 4: Section
This header level signifies a sub-scene level partition, usually called a “section” in the documen-
tation and the user interface. These can be useful if you want to change references mid-scene, like
if you change the point-of-view character. You are free to use sections as you wish, and you can
filter them out of the final manuscript just like with scene titles.

Page breaks are automatically added before level 1 and 2 headers when you build your project to a format
that supports page breaks, or when you print the document directly from the Manuscript Build tool. If
you want page breaks in other places, you have to specify them manually. See Vertical Space and Page
Breaks.

Tip: There are multiple options of how to process novel titles when building the manuscript. For
instance, chapter numbers can be applied automatically, and so can scene numbers if you want them in a
draft manuscript. See the Building the Manuscript page for more details.

15.1.1 Novel Title and Front Matter

It is recommended that you add a document at the very top of each Novel root folder with the novel title
as the first line. You should modify the level 1 header format code with an ! in order to render it as a
document title that is excluded from any automatic Table of Content in a manuscript build document,
like so:

#! My Novel

The title is by default centred on the page. You can add more text to the page as you wish, like for instance
the author’s name and details.

If you want an additional page of text after the title page, starting on a fresh page, you can add [NEW
PAGE] on a line by itself, and continue the text after it. This will insert a page break before the text. See
also Vertical Space and Page Breaks.

15.1.2 Unnumbered Chapter Headings

If you use the automatic numbering feature for your chapters, but you want to keep some special chapters
separate from this, you cam add an ! to the level 2 header formatting code to tell the build tool to skip
these chapters.

##! Unnumbered Chapter Title

There is a separate formatting feature for such chapters in the Manuscript Build tool as well. See the
Building the Manuscript page for more details. When building a document of a format that supports
page breaks, also unnumbered chapters will have a page break added just like for normal chapters.

Note: Previously, you could also disable the automatic numbering of a chapter by adding an * as the
first character of the chapter title itself. This feature has been dropped in favour of the current format in
order to keep level 1 and 2 headers consistent. Please update your chapter headings if you’ve used this
syntax.

66 Chapter 15. Novel Structure

CHAPTER

SIXTEEN

TAGS AND REFERENCES

In novelWriter there are no forms or tables to fill in to define the characters, locations and other elements
of your story. Instead, you can mark your project notes as representing these story elements by creating a
tag. Whenever you want to link a piece of your story to a note defining a story element, like a character,
you create a reference back to that tag. You can also cross-link your project notes in the same way.

This is perhaps one of the features that makes novelWriter different from other, similar applications. It is
therefore not always obvious to new users how this is supposed to work, so this chapter hopes to explains
in more detail how to use the tags and references system.

Tip: If you find the Tags and Reference system difficult to follow just from reading this chapter, you can
create a new project in novelWriter and select to “Fill the project with example files” in the New Project
Wizard. The example project contains several examples of tags and references.

16.1 Metadata in novelWriter

The structure of your novelWriter project is inferred from the headings within the documents, not the doc-
uments themselves. See Importance of Headings for more details. Therefore, metadata is also associated
with headings, and not the documents directly.

If you split your project into separate documents for each scene, this distinction may not matter. However,
there are several benefits to using documents at a larger structural scale when starting your project. For
instance, it may make more sense to define all your scenes, and even chapters, in a single document at
first, or perhaps a document per act. You can later split these documents up using the document split
feature. See Splitting and Merging Documents for more details.

The implication here is that you can treat each heading as an independent element of your notes that can
be referenced somewhere else. In order to make it possible to reference a header section, you need to
assign it a tag.

67

User Guide, Release 2.2.1

16.2 How to Use Tags

A “tag” in novelWriter is a word or phrase that you define as belonging to a heading. Tags are set by
using the @tags keyword. The full format of a tag is @tag: tagname, where tagname is an identifier
of your choosing. You can only set one tag per heading, and the tag has to be unique across all documents
in the project.

New in version 2.2: Tags are now case insensitive.

After the tags have been defined, they can then be referenced in the novel documents, or cross-referenced
in other notes. they will also show up in the Outline View and in the back-reference panel when a docu-
ment is opened in the viewer.

The syntax highlighter will indicate to you that the keyword is correctly used and that the tag is allowed,
that is, the tag is unique. Duplicate tags should be detected as long as the index is up to date. An invalid
tag should have a green wiggly line under it, and will not receive the syntax colour that valid tags do.

The tag is the only part of these notes that novelWriter uses. The rest of the document content is there
for you to use in whatever way you wish. Of course, the content of the documents can be added to the
manuscript, or an outline document. If you want to compile a single document of all your notes, you can
do this from the Manuscript Build tool.

Example of a heading with a tag for a character of the story:

Jane Doe

@tag: Jane

Some information about the character Jane Doe.

When this is done in a document in a Root Folder of type “Characters”, the tag is automatically treated as
an available character in your project, and you will be able to reference it in any of your other documents
using the reference keywords for characters. It will also show up in the Character tab in the Reference
panel below the document viewer, and in the reference auto-completer menu in the editor when you fill
in references. See Viewing a Document and The References Auto-Completer.

It is the root folder type that defines what category of story elements the tag is indexed under. See the
Project Roots section for an overview of available root folder types. They are also covered in the next
section.

16.3 How to Use References

Each heading of any level in your project can contain references to tags set in project notes. The references
are gathered by the indexer and used to generate the Outline View, among other things.

References are set as a keyword and a list of corresponding tags. The valid keywords are listed below. The
format of a reference line is @keyword: value1, [value2] ... [valueN]. All reference keywords
allow multiple values.

@pov
The point-of-view character for the current section. The target must be a note tag in a Character
type root folder.

68 Chapter 16. Tags and References

User Guide, Release 2.2.1

@focus
The character that has the focus for the current section. This can be used in cases where the focus
is not a point-of-view character. The target must be a note tag in a Character type root folder.

@char
Other characters in the current section. The target must be a note tag in a Character type root
folder. This should not include the point-of-view or focus character if those references are used.

@plot
The plot or subplot advanced in the current section. The target must be a note tag in a Plot type
root folder.

@time
The timelines touched by the current section. The target must be a note tag in a Timeline type root
folder.

@location
The location the current section takes place in. The target must be a note tag in a Locations type
root folder.

@object
Objects present in the current section. The target must be a note tag in a Object type root folder.

@entity
Entities present in the current section. The target must be a note tag in a Entities type root folder.

@custom
Custom references in the current section. The target must be a note tag in a Custom type root folder.
The custom folder are for any other category of notes you may want to use.

The syntax highlighter will alert the user that the tags and references are used correctly, and that the tags
referenced exist.

Note: The highlighter may be mistaken if the index of defined tags is out of date. If so, press F9
to regenerate it, or select Rebuild Index from the Tools menu. In general, the index for a document is
regenerated when it is saved, so this shouldn’t normally be necessary.

Tip: If you add a reference in the editor to a tag that doesn’t yet exist, you can right-click it and select
Create Note for Tag. This will generate a new project note automatically with the new tag defined. In
order for this to be possible, a root folder for that category of references must already exist.

One note can also reference another note in the same way novel documents do. When the note is opened
in the document viewer, the references become clickable links, making it easier to follow connections
in the plot. You can follow links in the document editor by clicking them with the mouse while holding
down the Ctrl key. Clicked links are always opened in the view panel.

Project notes don’t show up in the Outline View, so referencing between notes is only meaningful if you
want to be able to click-navigate between them, or of course if you just want to highlight that two notes
are related.

Tip: If you cross-reference between notes and export your project as an HTML document using the
Manuscript Build tool, the cross-references become clickable links in the exported HTML document as

16.3. How to Use References 69

User Guide, Release 2.2.1

well.

Example of a novel document with references to characters and plots:

Chapter 1

@pov: Jane

Scene 1

@char: John, Sam
@plot: Main

Once upon a time ...

16.3.1 The References Auto-Completer

An auto-completer context menu will show up automatically in the document editor when you type the
character @ on a new line. It will first suggest tag or reference keywords for you to add, and after the :
has been added, suggest references from the list of tags you have already defined.

You can use the auto-completer to add multiple references with a , between them, and even type new
ones. New references can be created by right-clicking on them and selecting Create Note for Tag from
the menu.

New in version 2.2.

70 Chapter 16. Tags and References

CHAPTER

SEVENTEEN

BUILDING THE MANUSCRIPT

You can at any time build a manuscript, an outline of your notes, or any other type of document from
the text in your project. All of this is handled by the Manuscript Build tool. You can activate it from the
sidebar, the Tools menu, or by pressing F5.

New in version 2.1: This tool is new for version 2.1. A simpler tool was used for earlier versions. The
simpler tool only allows you to define a single set of options for the build, but otherwise has much the
same functionality.

17.1 The Manuscript Build Tool

Fig. 1: The Manuscript Build tool main window.

The main window of the Manuscript Build tool contains a list of all the builds you have defined, a selection
of settings, and a few buttons to generate preview, open the print dialog, or run the build to create a
manuscript document.

71

User Guide, Release 2.2.1

17.2 Build Settings

Each build definition can be edited by opening it in the Manuscript Build Settings dialog, either by double-
clicking or by selecting it and pressing the edit button in the toolbar.

Tip: You can keep the Manuscript Build Settings dialog open while testing the different options, and
just hit the Apply button. You can test the result of your settings by pressing the Preview button in the
main Manuscript Build window. When you’re happy with the result, you can close the settings.

17.2.1 Document Selection

Fig. 2: The Selections page of the Manuscript Build Settings dialog.

The Selections page of the Manuscript Build Settings dialog allows you to fine tune which documents are
included in the build. They are indicated by a green arrow icon in the last column. On the right you have
some filter options for selecting content of a specific type, and a set of switches for which root folders to
include.

You can override the result of these filters by marking one or more documents and selecting to explicitly
include or exclude them by using the buttons below the tree view. The last button can be used to reset
the override and return control to the filter settings.

72 Chapter 17. Building the Manuscript

User Guide, Release 2.2.1

In the figure, the green arrow icon and the blue pin icon indicates which documents are included, and the
red forbidden icon indicates that a document is explicitly excluded.

17.2.2 Formatting Headings

Fig. 3: The Headings page of the Manuscript Build Settings dialog.

The Headings page of the Manuscript Build Settings dialog allows you to set how the headings in your
Novel Documents are formatted. By default, the title is just copied as-is, indicated by the {Title}
format. You can change this to for instance add chapter numbers and scene numbers like shown int he
figure above.

Clicking the edit button next to a format will copy the formatting string into the edit box where it can be
modified, and where a syntax highlighter will help indicate which parts are automatically generated by
the build tool. The Insert button is a dropdown list of these formats, and selecting one will insert it at the
position of the cursor.

Any text you add that isn’t highlighted in colours will remain in your formatted titles. {Title} will
always be replaced by the text in the heading from your documents.

You can preview the result of these format strings by clicking Apply, and then clicking Preview in the
Manuscript Build tool main window.

17.2. Build Settings 73

User Guide, Release 2.2.1

Scene Separators

If you don’t want any titles for your scenes (or for your sections if you have them), you can leave the
formatting boxes empty. If so, an empty paragraph will be inserted between the scenes or sections instead,
resulting in a gap in the text. You can also switch on the Hide setting, which will ignore them completely.
That is, there won’t even be an extra gap inserted.

Alternatively, if you want a separator text between them, like the common * * *, you can enter the
desired separator text as the format. If the format is any piece of static text, it will always be treated as a
separator.

17.2.3 Output Settings

The Content, Format and Output pages of the Manuscript Build Settings dialog control a number of other
settings for the output. Some of these only apply to specific output formats, which is indicated by the
section headings on the settings pages.

17.3 Building Manuscript Documents

Fig. 4: The Manuscript Build dialog used for writing the actual manuscript documents.

When you press the Build button on the Build Manuscript tool main window, a special file dialog opens
up. This is where you pick your desired output format and where to write the file.

On the left side of the dialog is a list of all the available file formats, and on the right, a list of the
documents which are included based on the build definition you selected. You can choose an output
path, and set a base file name as well. The file extension will be added automatically.

74 Chapter 17. Building the Manuscript

User Guide, Release 2.2.1

To generate the manuscript document, press the Build button. A small progress bar will show the build
progress, but for small projects it may pass very fast.

17.3.1 File Formats

Currently, four document formats are supported.

Open Document Format
The Build tool can produce either an .odt file, or an .fodt file. The latter is just a flat version of
the document format as a single XML file. Most rich text editors support the former, and only a
few the latter.

novelWriter HTML
The HTML format writes a single .htm file with minimal style formatting. The HTML document
is suitable for further processing by document conversion tools like Pandoc, for importing in word
processors, or for printing from browser.

novelWriter Markup
This is simply a concatenation of the project documents selected by the filters into a .txt file. The
documents are stacked together in the order they appear in the project tree, with comments, tags,
etc. included if they are selected. This is a useful format for exporting the project for later import
back into novelWriter.

Standard/Extended Markdown
The Markdown format comes in both Standard and Extended flavour. The only difference in terms
of novelWriter functionality is the support for strikethrough text, which is not supported by the
Standard flavour.

17.3.2 Additional Formats

In addition to the above document formats, the novelWriter HTML and Markup formats can also be
wrapped in a JSON file. These files will have a meta data entry and a body entry. For HTML, also the
accompanying CSS styles used by the preview are included.

The text body is saved in a two-level list. The outer list contains one entry per document, in the order they
appear in the project tree. Each document is then split up into a list as well, with one entry per paragraph
it contains.

These files are mainly intended for scripted post-processing for those who want that option. A JSON file
can be imported directly into a Python dict object or a PHP array, to mentions a few options.

17.4 Print and PDF

The Print button allows you to print the content in the preview window. You can either print to one of
your system’s printers, or select PDF as your output format from the printer icon on the print dialog.

Note: The paper format should in all cases default to whatever your system default is. If you want to
change it, you have to select it from the Print Preview dialog.

17.4. Print and PDF 75

User Guide, Release 2.2.1

76 Chapter 17. Building the Manuscript

CHAPTER

EIGHTEEN

FILE LOCATIONS

novelWriter will create a few files on your system outside of the application folder itself. These file
locations are described in this chapter.

18.1 Configuration

The general configuration of novelWriter, including everything that is in Preferences, is saved in one
central configuration file. The location of this file depends on your operating system. The system paths
are provided by the Qt QStandardPaths class and its ConfigLocation value.

The standard paths are:

• Linux: ~/.config/novelwriter/novelwriter.conf

• MacOS: ~/Library/Preferences/novelwriter/novelwriter.conf

• Windows: C:\Users\<USER>\AppData\Local\novelwriter\novelwriter.conf

Here, ~ corresponds to the user’s home directory on Linux and MacOS, and <USER> is the user’s user-
name on Windows.

Note: These are the standard operating system defined locations. If your system has been set up in a
different way, these locations may also be different.

18.2 Application Data

novelWriter also stores a bit of data that is generated by the user’s actions. This includes the list of recent
projects form the Open Project dialog. Custom themes should also be saved here. The system paths are
provided by the Qt QStandardPaths class and its AppDataLocation value.

The standard paths are:

• Linux: ~/.local/share/novelwriter/

• MacOS: ~/Library/Application Support/novelwriter/

• Windows: C:\Users\<USER>\AppData\Roaming\novelwriter\

Here, ~ corresponds to the user’s home directory on Linux and MacOS, and <USER> is the user’s user-
name on Windows.

77

https://doc.qt.io/qt-5/qstandardpaths.html
https://doc.qt.io/qt-5/qstandardpaths.html

User Guide, Release 2.2.1

Note: These are the standard operating system defined locations. If your system has been set up in a
different way, these locations may also be different.

78 Chapter 18. File Locations

CHAPTER

NINETEEN

HOW DATA IS STORED

This chapter contains details of how novelWriter stores and handles the project data.

19.1 Project Structure

All novelWriter files are written with utf-8 encoding. Since Python automatically converts Unix line
endings to Windows line endings on Windows systems, novelWriter does not make any adaptations to
the formatting on Windows systems. This is handled entirely by the Python standard library. Python also
handles this when working on the same files on both Windows and Unix-based operating systems.

19.1.1 Main Project File

The project itself requires a dedicated folder for storing its files, where novelWriter will create its own
“file system” where the project’s folder and file hierarchy is described in a project XML file. This is the
main project file in the project’s root folder with the name nwProject.nwx. This file also contains all
the meta data required for the project (except the index data), and a number of related project settings.

If this file is lost or corrupted, the structure of the project is lost, although not the text itself. It is important
to keep this file backed up, either through the built-in backup tool, or your own backup solution.

The project XML file is indent-formatted, and is suitable for diff tools and version control since most of
the file will stay static, although a timesetamp is set in the meta section on line 2, and various meta data
entries incremented, on each save.

A full project file format specification is available in the online documentation.

19.2 Project Documents

All the project documents are saved in a subfolder of the main project folder named content. Each
document has a file handle based on a 52 bit random number, represented as a hexadecimal string. The
documents are saved with a filename assembled from this handle and the file extension .nwd.

If you wish to find the file system location of a document in the project, you can either look it up in the
project XML file, select Show File Details from the Document menu when having the document open in
the editor, or look in the ToC.txt file in the root of the project folder. The ToC.txt file has a list of all
documents in the project, referenced by their label, and where they are saved.

The reason for this cryptic file naming is to avoid issues with file naming conventions and restrictions
on different operating systems, and also to have a file name that does not depend on what you name the
document within the project, or changes it to. This is particularly useful when using a versioning system.

79

https://docs.novelwriter.io/

User Guide, Release 2.2.1

Each document file contains a plain text version of the text from the editor. The file can in principle be
edited in any text editor, and is suitable for diffing and version control if so desired. Just make sure the file
remains in utf-8 encoding, otherwise unicode characters may become mangled when the file is opened
in novelWriter again.

Editing these files is generally not recommended. The reason for this is that the index will not be auto-
matically updated when doing so, which means novelWriter doesn’t know you’ve altered the file. If you
do edit a file in this manner, you should rebuild the index when you next open the project in novelWriter.

The first lines of the file may contain some meta data starting with the characters %%~. These lines are
mainly there to restore some information if the file is lost from the main project file, and the information
may be helpful if you do open the file in an external editor as it contains the document label and the
document class and layout. The lines can be deleted without any consequences to the rest of the content
of the file, and will be added back the next time the document is saved in novelWriter.

19.2.1 The File Saving Process

When saving the project file, or any of the documents, the data is first saved to a temporary file. If
successful, the old data file is then removed, and the temporary file replaces it. This ensures that the
previously saved data is only replaced when the new data has been successfully saved to the storage
medium.

For the project XML file, a .bak file is in addition kept, which will always contain the previous version
of the file, although when auto-save is enabled, they may have the same content. If the opening of a
project file fails, novelWriter will automatically try to open the .bak file instead.

19.3 Project Meta Data

The project folder contains a subfolder named meta, containing a number of files. The meta folder
contains semi-important files. That is, they can be lost with only minor impact to the project. All files in
this folder are JSON or JSON Lines files, although some other files may remain from earlier versions of
novelWriter as they haven’t all been JSON files in the past.

If you use version control software on your project, you can exclude this folder, although you may want
to track the session log file and the custom words list.

19.3.1 The Project Index

Between writing sessions, the project index is saved in a JSON file in meta/index.json. This file is
not critical. If it is lost, it can be completely rebuilt from within novelWriter from the Tools menu.

The index is maintained and updated whenever a document or note is saved in the editor. It contains all
references and tags in documents and notes, as well as the location of all headers in the project, and the
word counts within each header section.

The integrity of the index is checked when the file is loaded. It is possible to corrupt the index if the file
is manually edited and manipulated, so the check is important to avoid sudden crashes of novelWriter.
If the file contains errors, novelWriter will automatically build it anew. If the check somehow fails and
novelWriter keeps crashing, you can delete the file manually and rebuild the index. If this too fails, you
have likely encountered a bug.

80 Chapter 19. How Data is Stored

User Guide, Release 2.2.1

19.3.2 Build Definitions

The build definitions from the Manuscript Build tool are kept in the meta/builds.json file. If this file
is lost, all custom build definitions are lost too.

19.3.3 Cached GUI Options

A file named meta/options.json contains the latest state of various GUI buttons, switches, dialog
window sizes, column sizes, etc, from the GUI. These are the GUI settings that are specific to the project.
Global GUI settings are stored in the main config file.

The file is not critical, but if it is lost, all such GUI options will revert back to their default settings.

19.3.4 Custom Word List

A file named meta/userdict.json contains all the custom words you’ve added to the project for spell
checking purposes. The content of the file can be edited from the Tools menu. If you lose this file, all
your custom spell check words will be lost too.

19.3.5 Session Stats

The writing progress is saved in the meta/sessions.jsonl file. This file records the length and word
counts of each writing session on the given project. The file is used by the Writing Statistics tool. If this
file is lost, the history it contains is also lost, but it has otherwise no impact on the project.

Each session is recorded as a JSON object on a single line of the file. Each session record is appended
tot he file.

19.3. Project Meta Data 81

User Guide, Release 2.2.1

82 Chapter 19. How Data is Stored

CHAPTER

TWENTY

RUNNING FROM SOURCE

This chapter describes various ways of running novelWriter directly from the source code, and how to
build the various components like the translation files and documentation.

Note: The text below assumes the command python corresponds to a Python 3 executable. Python 2
is now deprecated, but on many systems the command python3 may be needed instead. Likewise, pip
may need to be replaced with pip3.

Most of the custom commands for building packages of novelWriter, or building assets, are contained in
the pkgutils.py script in the root of the source code. You can list the available commands by running:

python pkgutils.py help

20.1 Dependencies

novelWriter has been designed to rely on as few dependencies as possible. Only the Python wrapper
for the Qt GUI libraries is required. The package for spell checking is optional, but recommended.
Everything else is handled with standard Python libraries.

The following Python packages are needed to run all features of novelWriter:

• PyQt5 – needed for connecting with the Qt5 libraries.

• PyEnchant – needed for spell checking (optional).

PyQt/Qt should be at least 5.10, but ideally 5.13 or higher for all features to work. For instance, searching
using regular expressions with full Unicode support requires 5.13.

If you want spell checking, you must install the PyEnchant package. The spell check library must be at
least 3.0 to work with Windows. On Linux, 2.0 also works fine.

If you install from PyPi, these dependencies should be installed automatically. If you install from source,
dependencies can still be installed from PyPi with:

pip install -r requirements.txt

Note: On Linux distros, the Qt library is usually split up into multiple packages. In some cases, sec-
ondary dependencies may not be installed automatically. For novelWriter, the library files for renderring

83

User Guide, Release 2.2.1

the SVG icons may be left out and needs to be installed manually. This is the case on for instance Arch
Linux.

20.2 Build and Install from Source

If you want to install novelWriter directly from the source available on GitHub, you must first build the
package using the Python Packaging Authority’s build tool. It can be installed with:

pip install build

On Debian-based systems the tool can also be installed with:

sudo apt install python3-build

With the tool installed, run the following command from the root of the novelWriter source code:

python -m build --wheel

This should generate a .whl file in the dist/ folder at your current location. The wheel file can then be
installed on your system. Here with example version number 2.0.7, but yours may be different:

pip install --user dist/novelWriter-2.0.7-py3-none-any.whl

20.3 Building the Translation Files

If you installed novelWriter from a package, the translation files should be pre-built and included. If
you’re running novelWriter from the source code, you will need to generate the files yourself. The files
you need will be written to the novelwriter/assets/i18n folder, and will have the .qm file extension.

You can build the .qm files with:

python pkgutils.py qtlrelease

This requires that the Qt Linguist tool is installed on your system. On Ubuntu and Debian, the needed
package is called qttools5-dev-tools.

Note: If you want to improve novelWriter with translation files for another language, or update an
existing translation, instructions for how to contribute can be found in the README.md file in the i18n
folder of the source code.

84 Chapter 20. Running from Source

https://github.com/vkbo/novelWriter/releases

User Guide, Release 2.2.1

20.4 Building the Example Project

In order to be able to create new projects from example files, you need a sample.zip file in the assets
folder of the source. This file can be built from the pkgutils.py script by running:

python pkgutils.py sample

20.5 Building the Documentation

A local copy of this documentation can be generated as HTML. This requires installing some Python
packages from PyPi:

pip install -r docs/source/requirements.txt

The documentation can then be built from the root folder in the source code by running:

make -C docs html

If successful, the documentation should be available in the docs/build/html folder and you can open
the index.html file in your browser.

You can also build a PDF manual from the documentation using the pkgutils.py script:

python pkgutils.py manual

This will build the documentation as a PDF using LaTeX. The file will then be copied into the assets
folder and made available in the Help menu in novelWriter. The Sphinx build system has a few extra
dependencies when building the PDF. Please check the Sphinx Docs for more details.

20.4. Building the Example Project 85

https://www.sphinx-doc.org/

User Guide, Release 2.2.1

86 Chapter 20. Running from Source

CHAPTER

TWENTYONE

RUNNING TESTS

The novelWriter source code is well covered by tests. The test framework used for the development is
pytest with the use of an extension for Qt.

21.1 Dependencies

The dependencies for running the tests can be installed with:

pip install -r tests/requirements.txt

This will install a couple of extra packages for coverage and test management. The minimum requirement
is pytest and pytest-qt.

21.2 Simple Test Run

To run the tests, you simply need to execute the following from the root of the source folder:

pytest

Since several of the tests involve opening up the novelWriter GUI, you may want to disable the GUI for
the duration of the test run. Moving your mouse while the tests are running may otherwise interfere with
the execution of some tests.

You can disable the renderring of the GUI by setting the flag QT_QPA_PLATFORM=offscreen:

export QT_QPA_PLATFORM=offscreen pytest

21.3 Advanced Options

Adding the flag -v to the pytest command will increase verbosity of the test execution.

You can also add coverage report generation. For instance to HTML:

export QT_QPA_PLATFORM=offscreen pytest -v --cov=novelwriter --cov-report=html

Other useful report formats are xml, and term for terminal output.

You can also run tests per subpackage of novelWriter with the -m command. The available subpackage
groups are base, core, and gui. Consider for instance:

87

User Guide, Release 2.2.1

export QT_QPA_PLATFORM=offscreen pytest -v --cov=novelwriter --cov-
→˓report=html -m core

This will only run the tests of the “core” package, that is, all the classes that deal with the project data
of a novelWriter project. The “gui” tests, likewise, will run the tests for the GUI components, and the
“base” tests cover the bits in-between.

You can also filter the tests with the -k switch. The following will do the same as -m core:

export QT_QPA_PLATFORM=offscreen pytest -v --cov=novelwriter --cov-
→˓report=html -k testCore

All tests are named in such a way that you can filter them by adding more bits of the test names. They
all start with the word “test”. Then comes the group: “Core”, “Base”, “Dlg”, “Tool”, or “Gui”. Finally
comes the name of the class or module, which generally corresponds to a single source code file. For
instance, running the following will run all tests for the document editor:

export QT_QPA_PLATFORM=offscreen pytest -v --cov=novelwriter --cov-
→˓report=html -k testGuiEditor

To run a single test, simply add the full test name to the -k switch.

88 Chapter 21. Running Tests

INDEX

C
Context Menu, 19

H
Headings, 19

K
Keyword, 19

N
Novel Documents, 19

P
Project Index, 19
Project Notes, 19

R
Reference, 19
Root Folder, 19

T
Tag, 20

89

	Key Features
	Screenshots

	Overview
	Using novelWriter
	Organising Your Projects

	Getting Started
	Installing on Windows
	Installing on Linux
	Ubuntu
	Debian and Mint
	AppImage Releases

	Installing on MacOS
	Installing from PyPi

	Tips & Tricks
	Managing the Project
	Layout Tricks
	Organising Your Text
	Other Tools

	Customisations
	Spell Check Dictionaries
	Linux and MacOS
	Windows

	Syntax and GUI Themes
	Custom GUI and Icons Theme
	Custom Syntax Theme

	Glossary
	How it Works
	GUI Layout and Design
	Project Tree and Editor View
	Novel Tree and Editor View
	Novel Outline View
	Colour Themes

	Project Layout
	Building the Manuscript
	Project Storage

	Project Views
	The Project Tree
	Splitting and Merging Documents
	Splitting Documents
	Merging Documents

	Document Importance and Status
	Project Tree Drag & Drop

	The Novel Tree
	Project Outline View

	The Editor and Viewer
	Editing a Document
	Editor Auto-Completer

	Viewing a Document
	Search & Replace
	Auto-Replace as You Type

	Formatting Your Text
	Syntax Highlighting
	Headings
	Text Paragraphs
	Text Emphasis
	Extended Formatting with Shortcodes
	Comments and Synopsis
	Tags and References
	Paragraph Alignment and Indentation
	Vertical Space and Page Breaks

	Keyboard Shortcuts
	Main Window Shortcuts
	Project Tree Shortcuts
	Document Editor Shortcuts
	Text Search Shortcuts
	Text Formatting Shortcuts
	Other Editor Shortcuts
	Insert Shortcuts

	Document Viewer Shortcuts

	Typographical Notes
	Special Notes on Symbols
	Dashes and Ellipsis
	Single and Double Quotes
	Single and Double Prime
	Modifier Letter Apostrophe
	Special Space Symbols

	Project Format Changes
	Format 1.5 Changes
	Format 1.4 Changes
	Format 1.3 Changes
	Format 1.2 Changes
	Format 1.1 Changes
	Format 1.0 Changes

	Novel Projects
	Project Roots
	Deleted Documents
	Archived Documents
	Recovered Documents
	Project Lockfile
	Using Folders in the Project Tree

	Project Documents
	Word Counts

	Project Settings
	Settings Tab
	Status and Importance Tabs
	Auto-Replace Tab

	Backup
	Writing Statistics

	Novel Structure
	Importance of Headings
	Novel Title and Front Matter
	Unnumbered Chapter Headings

	Tags and References
	Metadata in novelWriter
	How to Use Tags
	How to Use References
	The References Auto-Completer

	Building the Manuscript
	The Manuscript Build Tool
	Build Settings
	Document Selection
	Formatting Headings
	Scene Separators

	Output Settings

	Building Manuscript Documents
	File Formats
	Additional Formats

	Print and PDF

	File Locations
	Configuration
	Application Data

	How Data is Stored
	Project Structure
	Main Project File

	Project Documents
	The File Saving Process

	Project Meta Data
	The Project Index
	Build Definitions
	Cached GUI Options
	Custom Word List
	Session Stats

	Running from Source
	Dependencies
	Build and Install from Source
	Building the Translation Files
	Building the Example Project
	Building the Documentation

	Running Tests
	Dependencies
	Simple Test Run
	Advanced Options

	Index

